

Developing Design Data: Field Sampling to Lab Testing

Evan J. Lindenbach, PE, PG Technical Service Center, Denver CO 8550 - Geotechnical Laboratory and Field

Presentation Outline

- Geotech Investigations
 - Design Data Needs
 - Sample Types
 - Intact Sampling
- Rock Lab Testing
 - Lab Tests
 - Design Data
- Soil Lab Testing
 - Lab Tests
 - Design Data
- Wrap-Up

Geotech Investigations

- Outcome based
 - New Construction
 - Foundation Design
 - Anticipated Construction Conditions
 - Existing Structures
 - Resilience to Failure Modes
 - Modifications
- Soil and Rock behavior
 - Lab boundary -> mimic field boundary
 - Material Properties
 - Index Properties

Geotech Investigations 2 Need/Purpose for Geotech Design Data Required Field and Lab Testing Drilling and Sample Types Quality Samples = Quality testing **Reliable Design Data!**

Sample Types

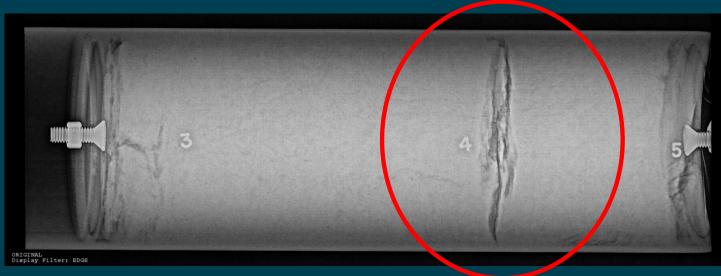
- In-situ conditions + What Lab Testing? (i.e., Design Data)
 - Sample Type -> Suit Lab Test
 - Borrow
 - Intact
- Work with the Labs prior to and during sampling

Rock Sample Inspection & Testing Program

- Rock Samples
 - Wireline core
 - N-, H-, P-sized
- Geologic Units of interest

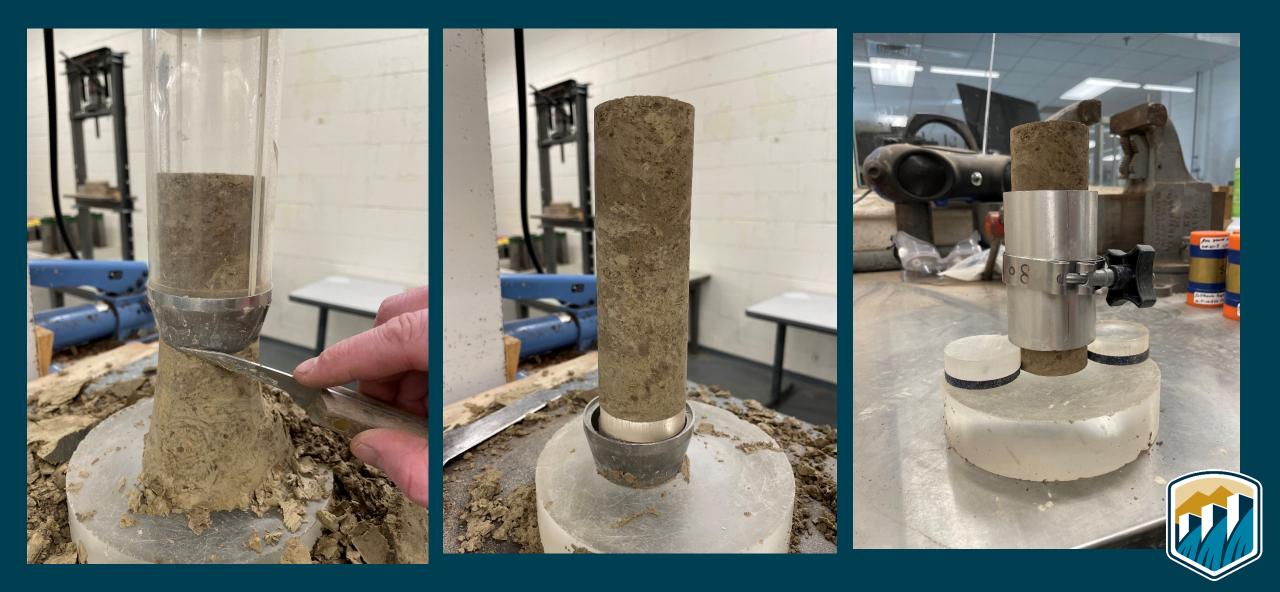
Soil Samples

- Bulk
- Thin-Walled Tubes (a.k.a. Shelby)
 - Highest Quality....not all soil types
 - Typically, 3" and 5" diameter
 - "Thin" walls
 - Larger is better
- Acrylic Tubes (a.k.a Lexan)
 - Good Quality
 - "Thick" Walled Sampler
 - Quality requires diligent setup and patience
- Block Samples
 - High Quality
 - Shallow Deposits, timely



Intact Sample Inspection

- X-ray Shelby Tubes
 - Tension Cracking
 - Natural Cracking/Desiccation
 - Stress Relief
- Visually look through Acrylic Tubes
 - Gravel interference
 - Cracking/void space



Presentation Outline 2

- Geotech Investigations
 - Design Data Needs
 - Sample Types
 - Intact Sampling

• Rock Lab Testing

- Lab Tests
- Design Data
- Soil Lab Testing
 - Lab Tests
 - Design Data
- Wrap-Up

Rock Testing 1/2

- Physical Properties
 - SpG, Abs., PI
- Slake Durability
 - Water decomp.
- Swell/Consolidation
 - Water exp.
- Indirect Tension (Brazilian) (IT)
 - Tensile
- Point Load
 - Field ~UCS

Rock Testing 2/2

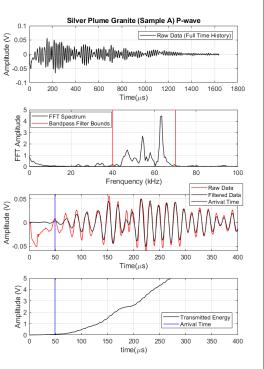
- Unconfined Compressive Strength (UCS) • σ_{c} , E
- Triaxial Compressive Strength (Triax)
 - + σ_{2,3} ->τ in (φ,c)
- Direct Shear (DS)
 - Joint τ (φ,c)
- Ultrasonic Pulse Velocity (UPV)

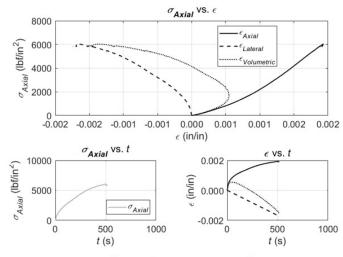

• E_{small strain}

• Mode I Fracture Toughness

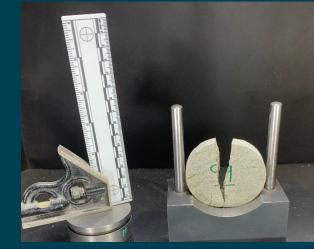
• K_{IC}

- Normal Stiffness of Joints
 - σ_n
- CERCHAR



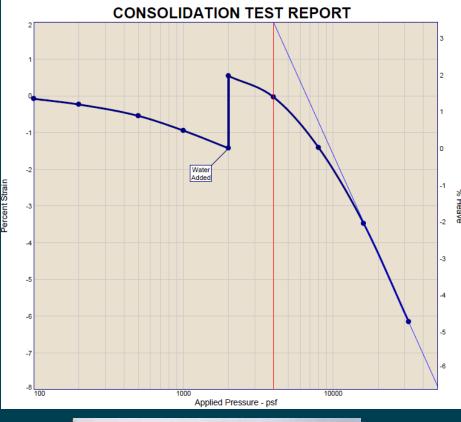

Rock Testing – End Uses 1/3

- Bearing Capacity/Stability
 - UCS, Triax, Mode I, Normal Stiffness, DS, UPV
- Excavatability
 - UCS, IT, UPV, CERCHAR



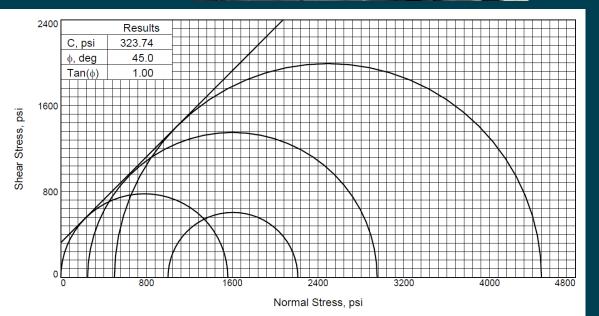
Test Results							
Young's Modulus (lbf/in ²)		R ²	Poisson's Ratio	R ²	Failure Type	Maximum Load (lbf/in ²)	Maximum Uniaxial Stress (lbf/in ²)
Tangent (20%-50%)	3.242E+06	1.00	0.21	0.97			
Average (40%-70%)	4.024E+06	1.00	0.25	0.96	Type II	18689	6082
Secant (0%-50%)	2.468E+06	•	0.35		1		

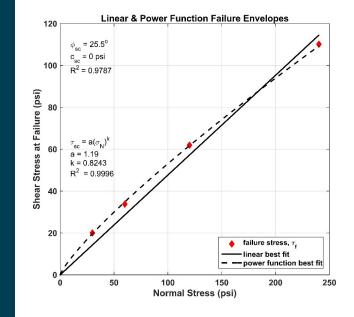
Rock Uniaxial Compressive Strength Test


Rock Testing – End Uses 2/3

Trenchless Crossing UCS, IT, UPV, CERCHAR, Slake

- Swell/Consol
 - S/C, PI, Slake




Rock Testing – End Uses 3/3

- Rock Slope Kinematics
 DS
- Anchors
 - Triax

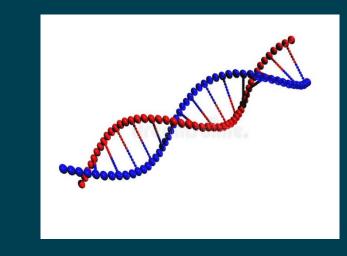
Project: El Vado Feature: Spillway Drill Hole: DH-100 Depth: 78.60 ft Sample: 42N-166 Core Size: 2.40in Material: Shale Type of Test: Sawcut Specimen Shear Mode: Unidirectional

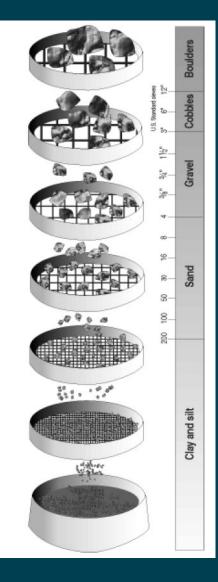
Joint Orientation: NA Joint Condition: NA Angle Drilled from Horizontal: 90.00

Presentation Outline 3

- Geotech Investigations
 - Design Data Needs
 - Sample Types
 - Intact Sampling
- Rock Lab Testing
 - Lab Tests
 - Design Data

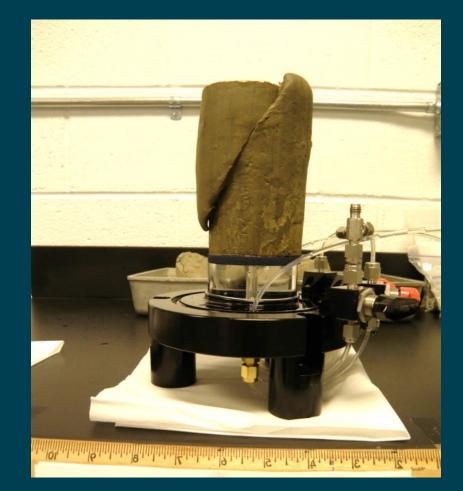
• Soil Lab Testing


- Lab Tests
- Design Data
- Wrap-Up



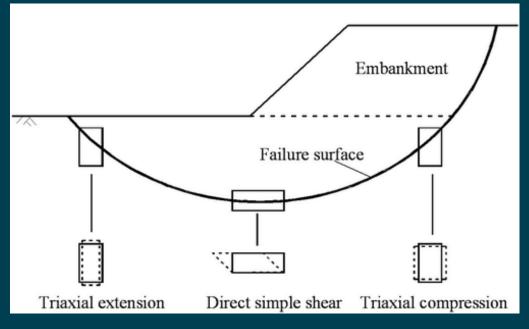
Soil Lab Testing

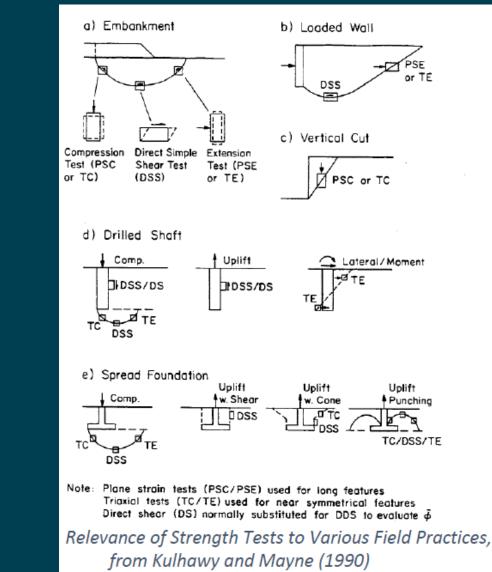
- Physical Properties
 - What "IS" the Soil?
 - Index Testing Classifications
 - Soil "DNA"
 - Bulk/Disturbed Samples OK
- Engineering Properties
 - How does the soil "Behave"?
 - Shear Strength
 - Compressibility
 - Permeability
 -more
 - Sampling requirements more complex!

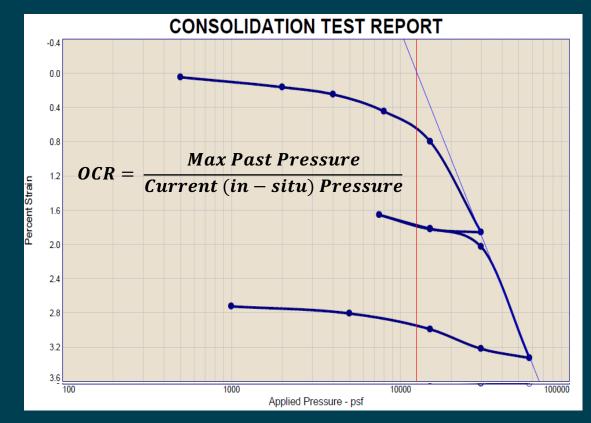

Soil Engineering Properties Testing

Intact Sample Testing

- In-situ Conditions
 - Test in its most natural state
 - Sample Quality is Paramount
 - Density and water content Important


Reconstituted Sample Testing


- Future Conditions
 - Bulk/Disturbed Samples OK
 - New Fill Borrow Areas
 - Post Earthquake
- When Intact sample is not possible


- Loading Conditions? Rapid? Slow?
- Drainage Conditions?
 - Pore Pressures

- Consolidation: Change in Soil Volume from increased stress
 - 1D Incr. Load Test
 - CRS Test
 - Maximum past pressure
 - Overconsolidation Ratio (OCR)
 - Highly affected by disturbance
 - Settlement Analysis (rate and mag)
 - OCR: Affects on Strength and Modulus
 - Stress History And Normalized Soil Engineering Properties (SHANSEP)

- Permeability (K): Rate of water flow through soil
 - Flexible Wall Perm Test (low K)
 - Rigid Wall Perm Test (High K)
 - Internal Erosion Permeameter

- Seepage Analysis
- Effective Stresses for modeling
- Critical Gradients

- Static Strength Testing: Mimic Stress and non-dynamic Loading conditions
 - Triaxial Compression
 - Direct Shear
 - Direct Simple Shear
 - Unconfined Compression

- Slope Stability Analyses
- FLAC Modeling
- Excavation Design
- Bearing Capacity/Foundation Design

- Cyclic Strength Testing: Mimic Ground Motions during Earthquake
 - Cyclic Triaxial Compression
 - Vertical Oscillation
 - Cyclic Direct Simple Shear
 - Horizontal Oscillation

- Cycles to "failure" (time)
- Site response modeling
- Liquefaction
- Post-earthquake Stability analyses

Presentation Outline 4

- Geotech Investigations
 - Design Data Needs
 - Sample Types
 - Intact Sampling
- Rock Lab Testing
 - Lab Tests
 - Design Data
- Soil Lab Testing
 - Lab Tests
 - Design Data
- Wrap-Up

Wrap-Up: Field to Lab Data

- Quality Samples = Quality Testing = *Reliable Design Data*
 - Sample Type Based on Anticipated Testing
 - Intact Sample Preservation/transport, Specimen Prep Techniques are critical
 - Specimen Selection Geologic Logs/Field Data, Sample Inspection
- Lab testing
 - Need right boundary condition
 - Understand uncertainty
 - Procedure nuance
 - Interpretation of results

Wrap Up: Analysis & Reporting

- Overall Data Analysis
 - Incorporating Field and Lab data
- Reporting
 - Tie the interpretation to the data
 - Field to lab
 - Uncertainty
 - Variability
 - The "Why?" in the data
- Upscale

Thank you!

Evan J. Lindenbach, PE, PG (303)445-2336; elindenbach@usbr.gov

