

Hazus Earthquake Model

FEMA Standard Operating Procedure for Hazus Earthquake Data Preparation and Scenario Analysis

Credits

Updated May, 2019

Jesse Rozelle, GISP Program Manager Natural Hazards Risk Assessment Program | Hazus FEMA HQ | RMD | Actuarial and Catastrophic Modeling Branch jesse.rozelle@fema.dhs.gov

Doug Bausch Risk Analytics Program Manager, NiyamIT, Inc. <u>dbausch@niyamit.com</u>

Hope A. Seligson Seligson Consulting haseligson@gmail.com

Reviewers:

Casey Zuzak, GISP Natural Hazards Risk Assessment Program | Hazus FEMA HQ | RMD | Actuarial and Catastrophic Modeling Branch <u>casey.zuzak@fema.dhs.gov</u>

Jordan Burns Risk Analysis Lead, Risk Analytics Program, NiyamIT, Inc. jburns@niyamit.com

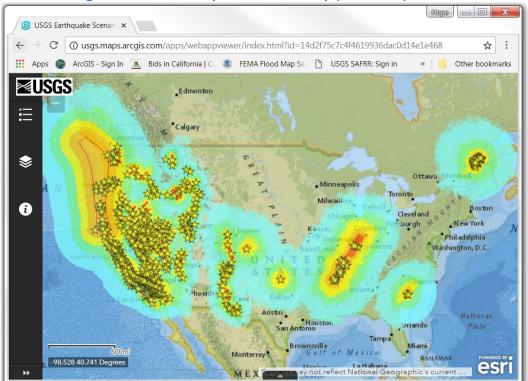
Special Thanks to: David Wald and the USGS NEIC (National Earthquake Information Center)

Table of Contents

Table	of C	Conte	ents
1. 9	SOP	Intro	duction1
2. I	Invei	ntory	//Hazard Data21
2.1	L	Hazı	us Default Inventory Data21
2.2	<u>)</u>	Usei	r Updated Inventory Data22
2.3	}	Haza	ard Data23
2	2.3.1	-	Soils Data23
-	2.3.2	2	Landslide Susceptibility Data
-	2.3.3	5	Liquefaction Susceptibility Data29
-	2.3.4	ļ	Groundwater Depth Data31
2.4	ļ	Inve	ntory/Hazard Data Summary
3. 9	Stud	y Re	gions
3.1		Dete	ermining Which Counties to Include in Your Study Region
3.2	2	Crea	ating your Study Region39
4. I	Haza	rd So	cenarios44
4.1	L	Diffe	erent Earthquake Hazard Scenario Options44
4.2	2	Defi	ning Your Scenario Using USGS ShakeMap XML grid data44
4	4.2.1		ShakeMap Overview44
4	4.2.2		Using the ShakeMap Download Interface in Hazus45
4.3	}	Haza	ard Data Layers
5. I	Data	Pre	paration60
5.1	L	Use	of the FEMA Hazus Export Tool60
5.2	<u>)</u>	Inte	rpreting and Communicating Results64
I.	5.2.1		Estimated Building Inspection Needs
ĩ	5.2.2		Life Threatening Injuries and Fatalities67
Į	5.2.3	}	Direct Building Economic Loss
Į	5.2.4	Ļ	Public Shelter Needs and Displaced Households70
Į	5.2.5	,	Estimated Total Debris71
Ĩ	5.2.6	j	Highway Segment Impact73
Į	5.2.7	,	Major Roadway Bridge Impact75
	5.2.8 I Emei		Hospital Functionality (Day 1)79

	5.2.9	Electrical Power Facility Impact	.81
	5.2.10	Oil Facility Impact	.84
	5.2.11	Natural Gas Facility Impact	.87
	5.2.12	Potable Water Facility Impact	.90
	5.2.13	Strong Ground Shaking - PGA (Peak Ground Acceleration)	.93
	5.2.14	Search and Rescue Needs	.96
6.	Referenc	es1	100

1. SOP Introduction

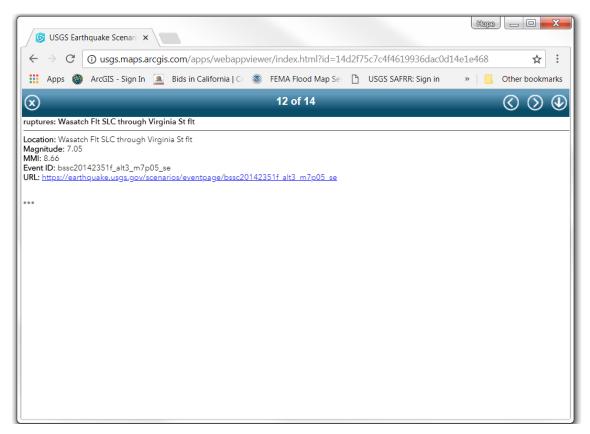

The Federal Emergency Management Agency (FEMA) developed Hazus and released the first model - the earthquake loss estimation model - in 1997. FEMA subsequently added flood, hurricane, and tsunami loss capabilities, while continuing to improve the earthquake model. Over time, a broad range of applications for Hazus results have emerged, including the development of mitigation strategies, scenario driven catastrophic planning, exercise support, and recovery and preparedness planning. For more information on Hazus, see: https://www.fema.gov/hazus.

This Standard Operating Procedure (SOP) describes the process of executing scenario analyses in the Hazus Earthquake Model, including integrating Hazus with the USGS's ShakeMap products, as well as the process of mapping and communication its results. Hazus includes an interface to directly import USGS ShakeMap XML grid files for both actual events, as well as scenarios. FEMA and the USGS have coordinated on the development of an extensive library of ShakeMap scenarios, largely based on the USGS National Seismic Hazard Map sources. These scenarios are accessible via an on-line map viewer, as shown in **Figure 1.1**;


http://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=14d2f75c7c4f4619936da c0d14e1e468. (Additional ShakeMap scenario data are available through a variety of legacy catalogs, accessible from: https://earthquake.usgs.gov/scenarios/catalog/.)

By clicking on an event's epicenter (the star symbol) in the on-line viewer, the user can select a rupture scenario (**Figure 1.2**), view metadata about the event (**Figure 1.3**), and access the available ShakeMap products (**Figure 1.4**). ShakeMap products include GIS data, KML/KMZ files, and XML files used for visualization, loss estimation, ShakeCast (Wald and others, 2008), Prompt Assessment of Global Earthquakes for Response (PAGER), and for other systems. These scenarios can be analyzed in Hazus, and the results can be used to support a broad range of emergency management activities, including mitigation, recovery and preparedness planning, as well as exercises for response.

Frequently, scenario selection is completed by users that want to test components of their emergency response capabilities without considering whether the scenario is credible. The selection of a credible scenario is especially critical for the promotion of mitigation of the vulnerabilities identified. Federal, State and local governments are unlikely to invest in mitigation if the scenarios are not considered reasonable. Deterministic scenarios based largely on the National Seismic Hazard Map sources, such as those described above, provide a uniform method of selecting scenarios, as well as a more effective communication of the risk to a community from these sources, as compared to the probabilistic approach.



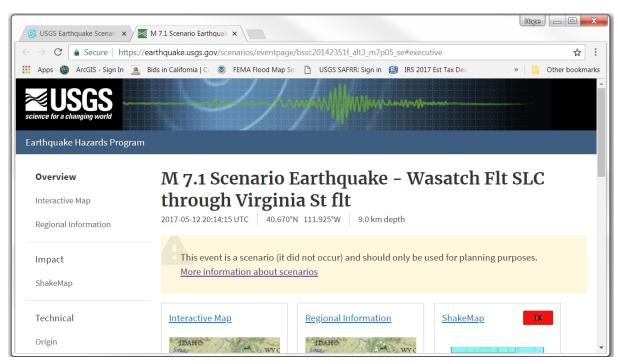


Figure 1.2 USGS Earthquake Scenario Map Viewer – Scenario Rupture Selection

Figure 1.3 USGS Earthquake Scenario Map Viewer – Scenario Rupture Metadata

Figure 1.4 USGS Earthquake Scenario Map Viewer – Scenario ShakeMap Page

In addition to incorporating data on regional ground shaking, Hazus users can also incorporate other seismic hazard data into their analysis, such as regional maps of soils or surficial geology, liquefaction susceptibility, depth to groundwater, and/or landslide susceptibility; these data are discussed further in Section 2.3. While these types of hazard data are readily available in selected areas¹, nationwide data sets do not exist. In conducting a scenario analysis, available local hazard maps should be sought; the USGS and equivalent state geological agencies are good resources, as are regional planning consortia (such as the Central Unites States Earthquake Consortia, CUSEC, which houses GIS data for liquefaction susceptibility and soil type for its eight (8) member states, see: https://cusec.org/earthquake-maps-data/).

Depending on the focus of your scenario modeling efforts (e.g., regional economic loss and population impacts, utility and transportation infrastructure performance), and the availability of local hazard data, the potentially significant investment required to develop new hazard data may or may not be justified:

¹ e.g., liquefaction susceptibility maps of the San Francisco Bay Area are available from the USGS: <u>https://pubs.usgs.gov/of/2006/1037/</u>

- If USGS ShakeMaps will be used for the scenario analysis, as recommended here, regional soils data are not required as these data are built into the ShakeMap development process.
- Maps of liquefaction susceptibility and depth to groundwater are used together to • estimate the severity of liquefaction-induced permanent ground deformation. If liquefaction susceptibility data are not available, data on depth to groundwater are not needed. If liquefaction susceptibility data are available but depth to groundwater data are not, a simplified uniform assumption may suffice (the conservative Hazus default assumption of "shallow" groundwater is a depth of 5 feet). In areas of significant liquefaction susceptibility exposure, a considerable increase in losses may be expected. For example, in the recent M7.0 "HayWired" Scenario Hazus analysis (Seligson, et al., 2018), liquefaction modeling within Hazus added 14% to the estimated regional building damage produced by ground shaking alone, in the seven (7) Counties in which liquefaction data were modeled using the standard Hazus approach. The contribution of ground failure to overall losses will vary based on conditions in each region. It should be noted that ground failure can be highly disruptive to lifelines, and that highways, airport runways and other surface-built infrastructure are only vulnerable to ground deformation and will suffer no predicted damage under shaking hazards alone.
- Landslide hazards are quite localized; depending on the prevalence of landslide hazards in your community, the level of effort required to develop landslide susceptibility maps may be difficult to justify. In the "HayWired" Scenario Hazus analysis (Seligson, et al., 2018), detailed (pixel-level) landslide mapping and application of Hazus methods in nine (9) counties produced landslide-related building damage that added just 1% to the regional building damage estimates produced by ground shaking. Nevertheless, landslide hazards can be extremely disruptive to lifelines and elevate overall losses in susceptible regions. The USGS has recently added companion products to ShakeMap that communicate the potential for both liquefaction- and landslide-induced ground failure, including potential population exposure, available from the USGS earthquake event web page for significant events².

Hazus includes more than 240 analysis modules that estimate losses ranging from building damage to social losses including casualties and displaced households. Since Hazus operates in a powerful GIS platform, a variety of results with critical base layers can be displayed. These maps and results can effectively communicate risk before the earthquake happens, as well as immediately after the earthquake for response and

² See for example: <u>https://earthquake.usgs.gov/earthquakes/eventpage/us70003a63/ground-failure/summary</u> Federal Emergency Management Agency

recovery applications. This SOP includes descriptions of various standard Hazus results, along with recommended symbology information, and terminology definitions.

Integrating USGS ShakeMap data based on the National Seismic Hazard Map sources into Hazus will ensure that scenarios are developed based on authoritative sources and provide consistency with the hazard maps widely used for building codes. Use of this SOP also ensures consistency in the presentation of results for different earthquake scenarios and establishes a standard protocol for Hazus Earthquake results symbology. Results can readily be used in a variety of applications, including the development of mitigation strategies, scenario driven catastrophic planning, exercise support, and recovery and preparedness planning.

2. Inventory/Hazard Data

2.1 Hazus Default Inventory Data

*If you are *not* planning on making inventory updates or incorporating hazard data other than ground shaking, you can proceed to Section 3 "Study Regions".

Hazus comes with nationwide default databases for the following categories:

- 1. General Building Stock: aggregated data on the census block or census tract level (tract level in the earthquake model) representing building use types, construction types, and seismic design levels for the following occupancy types:
 - Residential
 - Commercial
 - Industrial
 - Agricultural
 - Religious
 - Government
 - Educational
- 2. Essential Facilities
 - Medical care facilities (i.e., hospitals)
 - Emergency operations centers
 - Police stations
 - Fire stations
 - Schools
- 3. High Potential Loss Facilities
 - Dams and levees³
 - Nuclear power facilities³
 - Military installations³
 - Hazardous materials facilities³
- 4. Transportation
 - Highway segments, tunnels, and bridges
 - Railway track segments, tunnels, bridges, and facilities
 - Light rail track segments, tunnels, bridges, and facilities
 - Bus facilities
 - Port and harbor facilities
 - Ferry facilities
 - Airport facilities and runways

³ Placeholder only - no default data

- 5. Utility Systems
 - Potable water facilities, pipeline segments³, and distribution lines⁴
 - Waste water facilities, pipeline segments³, distribution lines⁴
 - Crude and refined oil facilities, pipeline segments³
 - Natural gas facilities, pipeline segments³, and distribution lines⁴
 - Electric power facilities
 - Communication facilities
- 6. Population Demographics
 - Total population and households
 - Number of people by gender and age, by ethnicity, and households by income
 - Housing characteristics, such as housing units built by decade, median year built and units by type and ownership
 - Population working in various job sectors

2.2 User Updated Inventory Data

The default databases provided with Hazus are a great nationwide dataset, but the incorporation of more detailed local data can greatly enhance the accuracy of the model. Any of the default databases identified above can either be edited, replaced, or appended to by the user. Hazus has a comparison tool developed by FEMA called the CDMS (Comprehensive Data Management System) for updating inventory data for your state of interest. (For more information, see: <u>https://www.fema.gov/comprehensive-data-management-system</u>).

Updating the inventory data can be quite time consuming and should be done in advance of use of the earthquake model. It will require database management, GIS data processing and Hazus testing to ensure that data formats are compatible with Hazus. To learn more, visit the CDMS link above, consult the Hazus earthquake technical manual, or there is a course available called E0317 "Comprehensive Data Management for Hazus" at the Emergency Management Institute <u>https://www.fema.gov/hazus-mh-training</u>.

Lessons learned during previous FEMA-funded studies are also instructive. In 2007-2009, FEMA funded three "Essential Facilities Risk Assessment Studies" in Orange, Riverside and San Bernardino Counties, California. Each study included an update of default essential facilities data, as well as an update of the Hazus General Building Stock inventory databases, using available Assessor's data. The studies produced a Risk Assessment Report for each county to use in subsequent mitigation planning. A Guidelines document

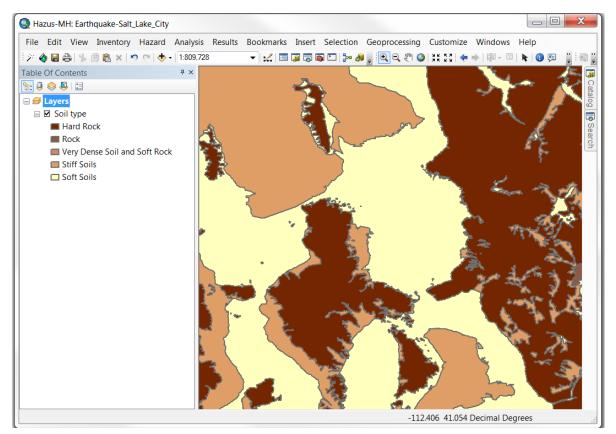
⁴ Aggregate distribution line length by census tract

Federal Emergency Management Agency

was also produced to facilitate similar improvements in other areas.

Inventory data updates can significantly change the losses calculated by the Hazus earthquake model. For example, the Hazus 4.2 default general building stock number of URM (Unreinforced Masonry) buildings for the state of Utah is 21,549. The FEMA Region VIII office updated the general building stock for the State of Utah using assessor's data for Salt Lake County first in 2010, and most recently in 2018 to better represent the significant number of URM structures. After incorporating the most recent assessor's data derived URM counts for Salt Lake County, the URM totals for the State of Utah increased to 91,773 URM structures. This caused a significant increase in losses estimated in a statewide annualized loss analysis of Utah (**Table 2.1**), as URMs are extremely vulnerable to seismic activity and contribute the majority of severe casualties.

	URM	Direct Economic	Level 1 Casualties	Level 2 Casualties	Level 3 Casualties	Level 4 Casualties
Scenario	Count	Losses	2pm	2pm	2pm	2pm
Utah Statewide Annualized Loss with Default MR4 Data	19,192	95M	56	16	3	5
Utah Statewide Annualized Loss with Updated Inventory	188,427	160M	106	31	5	10


Table 2.1: 2013 Utah AAL Results for URM for Default and Improved Data

2.3 Hazard Data

The incorporation of user supplied hazard data can further increase the accuracy of your results, where data are available. Hazard data are added after study region creation, and before running the hazard scenario analysis. When user supplied hazard data is not provided, default values are applied. The following hazard data types are commonly used and their required format are described below. The incorporation of these data types is explained in Section 4.3.

2.3.1 Soils Data

Soils data (**Figure 2.1**) can be applied to represent the soil type at any given point. Incorporating soils data is most important when non-ShakeMap scenarios are being modeled, using Hazus' built-in ground motion estimation procedure, or when probabilistic scenarios are used and/or Average Annual Losses (AALs) are being computed. ShakeMaps already consider variation in local soil conditions, so incorporating a soils layer is not necessary when ShakeMaps are used. As of the release of Hazus 4.2 Service Pack 02 (Hazus 4.2.2), the USGS probabilistic hazard data provided with Hazus incorporate soil amplification by default, however, more refined soil maps can be provided by the user and override the default. Soil type is applied to site specific structures, and an average soil Federal Emergency Management Agency type value is assigned to each census tract to influence the amplification of ground shaking and the losses calculated for the general building stock. If no soils data are given, a soil type of D (stiff soils) is assumed by default. If the soils map as input does not cover the entire Hazus study region, Hazus will apply the default soil type (D) in areas beyond the limits of the user-input map.

Figure 2.1: Example Soils Dataset for the Wasatch Front, Utah

In order to incorporate a soil type dataset, it must be formatted to a Hazus readyformat. First, the soil types must all be categorized into Hazus format soil classes (**Table 2.2**) from the Hazus Earthquake Technical Manual) with the site class (A - E) as the identifier. The soils data will also have to be imported into an ESRI personal geodatabase, using the World Geodetic System 1984 (WGS84) geographic coordinate system. (**Figure 2.2**).

Table 2.2: Hazus Site Classes

Site			ve Velocity (sec)
Class	Site Class Description	Minimum	Maximum
А	HARD ROCK Eastern United States sites only	1500	
В	ROCK	760	1500
с	VERY DENSE SOIL AND SOFT ROCK Undrained shear strength $u_s \ge 2,000 \text{ psf}$ ($u_s \ge 100 \text{ kPa}$) or N $\ge 50 \text{ blows/ft}$	360	760
D	STIFF SOILSStiff soil with undrained shear strength 1,000 psf $\leq u_s \leq 2,000$ psf(50 kPa $\leq u_s \leq 100$ kPa) or $15 \leq N \leq 50$ blows/ft	180	360
E	SOFT SOILS Profile with more than 10 ft (3 m) of soft clay defines as soil with plasticity index PI > 20, moisture content $w > 40\%$ and undrained shear strength u _s < 1,000 psf (50 kPa) or N<50 blows/ft		180
F	 SOILS REQUIRING SITE SPECIFIC EVALUATIONS Soils vulnerable to potential failure or collapse under seismic loading, e.g., liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils Peats and/or highly organic clays, 10 ft (3 m) or thicker layer Very high plasticity clays, 25 ft (8 m) or thicker layer with plasticity index > 75 Very thick soft/medium stiff clays, 120 ft (36 m) or thicker layer 		

Figure 2.2: Example Metadata Showing Hazus' Required Coordinate System

Item Description - Soils_WGS84	×
Description Preview	
🚔 Print 📝 Edit 📝 Validate 💽 Export 🛐 Import	
Extents V	^
Spatial Reference 🕨	
ARCGIS COORDINATE SYSTEM * TYPE Geographic	
* GEOGRAPHIC COORDINATE REFERENCE GCS_WGS_1984	
* COORDINATE REFERENCE DETAILS GEOGRAPHIC COORDINATE SYSTEM	=
WELL-KNOWN IDENTIFIER 4326	
X ORIGIN -400	
Y ORIGIN -400 XY SCALE 999999999999988	
Z ORIGIN -100000	
Z SCALE 10000	
M ORIGIN -100000 M SCALE 10000	
XY TOLERANCE 8.983152841195215e-009	
Z TOLERANCE 0.001	
M TOLERANCE 0.001 HIGH PRECISION true	
LEFT LONGITUDE -180	
LATEST WELL-KNOWN IDENTIFIER 4326	
WELL-KNOWN TEXT GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHE	ROID
["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT ["Degree",0.0174532925199433],AUTHORITY["EPSG",4326]]	
REFERENCE SYSTEM IDENTIFIER	
* VALUE 4326	
* CODESPACE EPSG * VERSION 6.14(3.0.1)	-

The field containing the lettered soil type must be called "Type" and use Text data type of length = 1 (**Figure 2.3**). All values within this column must fall between A and E. Any other values, or "Null" values will cause Hazus to crash upon import. If using a high-resolution dataset, it is recommended that users *dissolve* the dataset on the "Type" field before use in Hazus (undissolved high-resolution data may result in maps not correctly applying hazard values.) This will yield a layer containing one feature for each "Type" value present, as shown in **Figure 2.3**.

Table										
🖽 - 🖶 - 🖳 🏡 🖾 🐠 🗙										
So	ils_WGS84					×				
	OBJECTID *	Shape *	TYPE	Shape_Length	Shape_Area					
	1	Polygon	А	46.735269	0.924179					
	2	Polygon	В	0.233457	0.001558					
	3	Polygon	D	40.207921	0.540215					
	4	Polygon	E	31.761042	0.564806					
14	I 0 ► ►I I (0 out of 4 Selected)									
Sc	oils_WGS84									

Figure 2.3: Example Attribute Data for Site Class as Stored in the "Type" field

2.3.2 Landslide Susceptibility Data

Landslide susceptibility data (**Figure 2.4**) can be applied to represent the landslide susceptibility at any given point. This landslide susceptibility is then applied to site specific structures, and an average landslide susceptibility value is assigned to each census tract. Landslide susceptibility data in Hazus is measured on a scale of 0 - 10 (*None* to *X* in Roman numerals), considering geologic group, slope angle, and groundwater conditions, with 0 meaning "None", and a 10 meaning "Severe" (**Table 2.3**). If no landslide susceptibility data is applied, a default susceptibility value of "None" is applied.

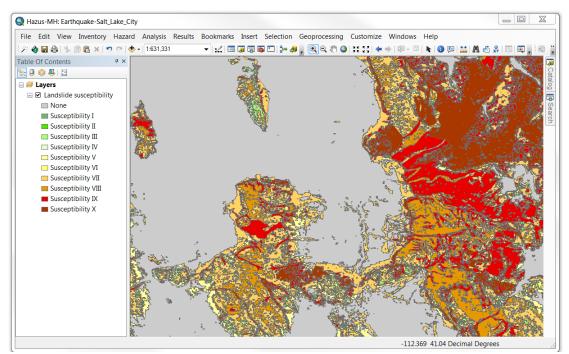


Figure 2.4: Example Landslide Susceptibility Dataset for the Wasatch Front, Utah

		Slope Angle, degrees							
Ge	ologic Group	0–10 10–15 15–20 20–30 30–40							
(a) DRY (groundwater below level of sliding)									
Α	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone)	None	None	I	II	IV	VI		
В	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone)	None	111	IV	V	VI	VII		
С	Argillaceous Rocks (shales, clayey soil, existing landslides, and poorly compacted fills)	V	VI	VII	IX	IX	IX		
(b) WET (groundwater level at ground surface)									
Α	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone)	None	111	VI	VII	VIII	VIII		
В	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone)	V	VIII	IX	IX	IX	Х		
С	Argillaceous Rocks (shales, clayey soil, existing landslides, and poorly compacted fills)	VII	IX	Х	Х	Х	Х		

Table 2.3: Hazus Landslide Susceptibility Classes

* Landslide susceptibility is measured on a scale of I to X, with X being the most susceptible

In order to incorporate a landslide susceptibility dataset, it must be formatted to a Hazus ready format. First, the landslide susceptibility types must all be categorized into Hazus format classes with a numeric susceptibility value between 0 and 10. The dataset will then have to be imported into an ESRI personal geodatabase, with a World Geodetic System 1984 (WGS84) coordinate system (**Figure 2.2**). The column containing the landslide susceptibility value should be called "Type" and have a short integer numeric data type (**Figure 2.5**). All values within this column must fall between 0 and 10. Any other values, or "Null" values will cause Hazus to crash upon import. As noted above, if using a high-resolution dataset, it is recommended that users *dissolve* the dataset on the "Type" field before use in Hazus.

Table [[:] - 뢉 - 댘 탃 다 작 쓰 ×								
Landslide_Susc_WGS84								
	OBJECTID *	Shape *	Туре	Shape_Length	Shape_Area			
	1	Polygon	0	107.76891	0.935701			
	2	Polygon	3	67.911914	0.03526			
	3	Polygon	5	85.82207	0.068008			
	4	Polygon	6	109.14951	0.054513			
	5	Polygon	7	285.500845	0.282556			
	6	Polygon	8	174.272766	0.151189			
	7	Polygon	9	268.139417	0.253939			
	8	Polygon	10	142.181789	0.250466			
I4 La			(0 out o	f 8 Selected)				

Figure 2.5: Example Attribute Data for Landslide Susceptibility as Stored in the "Type" field

2.3.3 Liquefaction Susceptibility Data

Liquefaction susceptibility data (**Figure 2.6**) can be applied to represent the liquefaction susceptibility of the ground at any given point. This value is then applied to site specific structures, and an average liquefaction susceptibility value is assigned to each census tract. Liquefaction susceptibility in Hazus is measured on a scale of 0 - 5, with 0 representing "None", and 5 representing "Very High" (**Table 2.4**). If no liquefaction data is applied, a default value of "None" is applied.

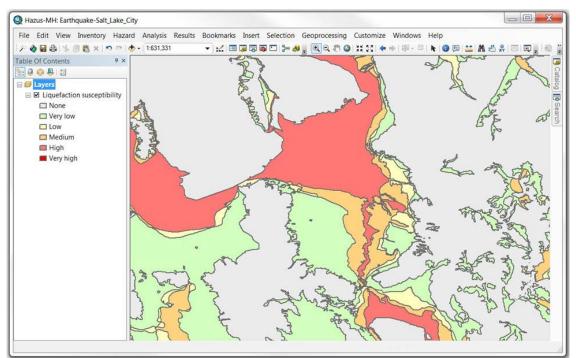


Figure 2.6: Example Liquefaction Susceptibility Dataset for the Wasatch Front, Utah

	General Distribution of	Likelihood that Cohesionless Sediments when Saturated Would Be Susceptible to Liquefaction (by Age of Deposit)										
Type of Deposit	Cohesionless Sediments in Deposits	< 500 yr Modern	Holocene < 11 ka	Pleistocene 11 ka – 2 Ma	Pre- Pleistocene 11 ka – 2 Ma							
(a) Continental Deposits												
River channel	Locally variable	Very High	High	Low	Very Low							
Flood plain	Locally variable	High	Moderate	Low	Very Low							
Alluvial fan and plain	Widespread	Moderate	Low	Low	Very Low							
Marine terraces and plains	Widespread	_	Low	Very Low	Very Low							
Delta and fan-delta	Widespread	High	Moderate	Low	Very Low							
Lacustrine and playa	Variable	High	Moderate	Low	Very Low							
Colluvium	Variable	High	Moderate	Low	Very Low							
Talus	Widespread	Low	Low	Very Low	Very Low							
Dunes	Widespread	High	Moderate	Low	Very Low							
Loess	Variable	High	High	High	Unknown							
Glacial till	Variable	Low	Low	Very Low	Very Low							
Tuff	Rare	Low	Low	Very Low	Very Low							
Tephra	Widespread	High	High	?	?							
Residual soils	Rare	Low	Low	Very Low	Very Low							
Sebka	Locally variable	High	Moderate	Low	Very Low							
	(b)	Coastal Zone	•									
Delta	Widespread	Very High	High	Low	Very Low							
Estuarine	Locally variable	High	Moderate	Low	Very Low							
Beach - High Wave Energy	Widespread	Moderate	Low	Very Low	Very Low							
Beach - Low Wave Energy	Widespread	High	Moderate	Low	Very Low							
Lagoonal	Locally variable	High	Moderate	Low	Very Low							
Fore shore	Locally variable	High	Moderate	Low	Very Low							
		(c) Artificial										
Uncompacted Fill	Variable	Very High	_	_	_							
Compacted Fill	Variable	Low	_	_								

Table 2.4: Hazus Liquefaction Susceptibility Classes

In order to incorporate a liquefaction susceptibility dataset, it must be formatted to a Hazus ready format. First, the liquefaction susceptibility types must all be categorized into Hazus format classes with a numeric susceptibility value between 0 and 5, where 0 is "None" and 5 is "Very High". The dataset will then have to be placed in an ESRI personal geodatabase, with a World Geodetic System 1984 (WGS84) projection (**Figure 2.2**). The column containing the liquefaction susceptibility value Federal Emergency Management Agency

should be called "Type" and have a short integer numeric data type (**Figure 2.7**). All values within this column must fall between 0 and 5. Any other values, or "Null" values will cause Hazus to crash upon import. As noted above, if using a high-resolution dataset, it is recommended that users *dissolve* the dataset on the "Type" field before use in Hazus.

🗄 - 🖶 - 🖫 🎦 🚳 🛛									
Liquefaction_Susc_WGS84									
	OBJECTID *	Shape *	TYPE	Shape_Length	Shape_Area				
	1	Polygon	0	55.05141	1.306164				
	2	Polygon	1	50.312723	0.372311				
	3	Polygon	2	14.044619	0.054861				
	4	Polygon	3	16.647386	0.10124				
Π	5	Polygon	4	12.763378	0.196113				
14 0 ▶ ▶1 ● (0 out of 5 Selected)									

Figure 2.7: Example Attribute Data for Liquefaction Susceptibility as Stored in the "Type" field

2.3.4 Groundwater Depth Data

Groundwater depth data (**Figure 2.8**) is utilized in the assessment of liquefaction impacts and can be applied to represent the depth of the groundwater table at any given point. This value is then applied to site specific structures, and an average groundwater depth value is assigned to each census tract. Groundwater depth data in Hazus is measured numerically in feet. If no ground water depth data is applied, a default groundwater depth of 5 feet is applied.

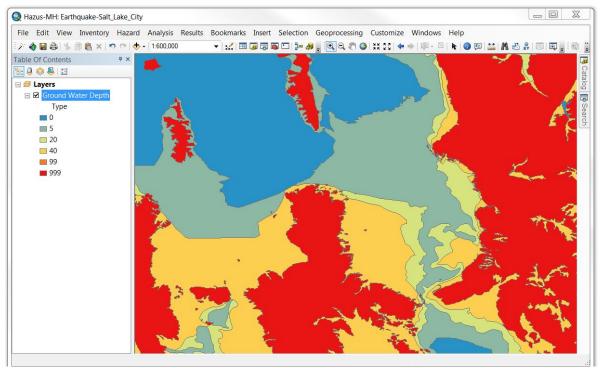


Figure 2.8: Example Groundwater Depth Dataset for the Wasatch Front, Utah

In order to incorporate a groundwater depth dataset, it must be formatted to a Hazus ready format. First, the groundwater depth values need to be in feet. If the depths are in another system of measurement, it must first be converted to feet. The dataset will then have to be placed in an ESRI personal geodatabase, with a World Geodetic System 1984 (WGS84) projection (**Figure 2.2**). The column containing the water depth value should be called "Type" and have a Double numeric data type (**Figure 2.9**). All values within this column must be numerical. Any other values, or "Null" values will cause Hazus to crash upon import. As noted above, if using a high-resolution dataset, it is recommended that users *dissolve* the dataset on the "Type" field before use in Hazus. Caution should be used in selecting a value to represent very deep groundwater (e.g., 999 in **Figure 2.9**); Hazus computes an area-weighted average groundwater depth value to assign to census tracts and very large place-holder values will skew the results.

Ta	Table									
°= •=	[] - 탑 - 🖫 👧 🗵 💩 🗙									
gro	groundwater_depth_WGS84									
	OBJECTID *	Shape *	TYPE	Shape_Length	Shape_Area					
	1	Polygon	0	9.446445	0.380641					
	2	Polygon	5	20.829825	0.26887					
	3	Polygon	20	12.559132	0.089511					
	4	Polygon	40	45.947512	0.366213					
	5	Polygon	99	0.23336	0.001558					
	6	Polygon	999	46.949725	0.923965					
14	6 Polygon 999 46.949725 0.923965 14 0 ► ► □ □ (0 out of 6 Selected)									
gr	oundwater_dept	h_WGS84								

Figure 2.9: Example Attribute Data for Groundwater Depth as Stored in the "Type" field

There are other hazard data types that can be incorporated into the Hazus earthquake model, but these four are the most commonly used. To learn more about the other hazard data types, consult the Hazus Earthquake Technical Manual.

2.4 Inventory/Hazard Data Summary

The inclusion of improved inventory and hazard data can greatly increase the accuracy of your analysis results. The 2010 table shown below (**Table 2.5**) is a good example of the difference in losses once can expect when incorporating updated inventory data, or hazard data.

Inventory Data	Hazard Data	URM Count	Direct Economic Losses (\$B)	Level 1 Casualties 2 pm	Level 2 Casualties 2 pm	Level 3 Casualties 2 pm	Level 4 Casualties 2 pm
Default MR4 Data	No Hazard Data	15,960	21.26	14,044	4,376	764	1,459
Updated Inventory	No Hazard Data	172,281	33.86	21,855	6,776	1,151	2,206
Default MR4 Data	Hazard Data	15,960	24.70	14,930	4,619	805	1,526
Updated Inventory	Hazard Data	172,281	35.40	22,832	7,057	1,201	2,289

Table 2.5: Differences in Losses – Comparison with and without Improved Inventory and Hazard
Data (Salt Lake City Segment Scenario, 2010)

3. Study Regions

3.1 Determining Which Counties to Include in Your Study Region

Before you create your study region for an earthquake analysis, it is important to know which Counties to include. It is recommended that you include all Counties with earthquake ground motions, in terms of peak ground acceleration (PGA), in excess of about 0.1g, as this is generally considered to be the threshold for the onset of damage to poorly constructed buildings. There are various ways to identify which Counties should be included, ranging from a simple visual review of on-line ShakeMaps, to downloading ShakeMap GIS data and comparing to County boundary data. The latter method is strongly recommended, but both of these options will be discussed briefly here.

The simplest way to determine the impacted counties is to look at the event's ShakeMap. For example, for the 2012 M7.0 Utah ShakeOut event, you could review the intensity map (**Figure 3.1**) or the PGA map (**Figure 3.2**). While both of these maps include selected city locations, neither includes County boundaries, so you will need to compare them to the County boundary map of your choice (e.g., in GIS, or on-line, such as on geology.com, <u>https://geology.com/county-map/utah.shtml</u>, see **Figure 3.3**). Using the 9% g contour on the PGA map, an initial impacted County list (from north to south) might include seven counties: Weber, Davis, Morgan, Salt Lake, Summit, Utah and Wasatch Counties.

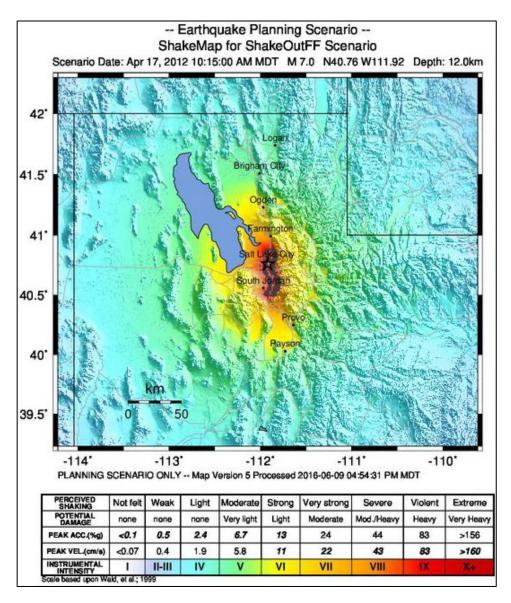
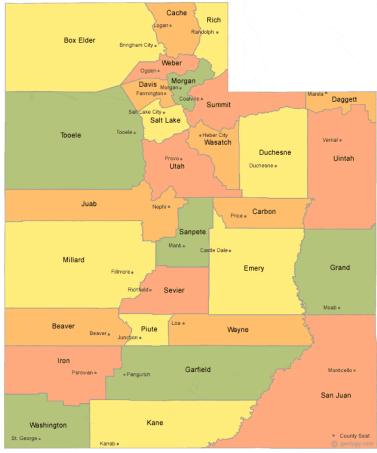
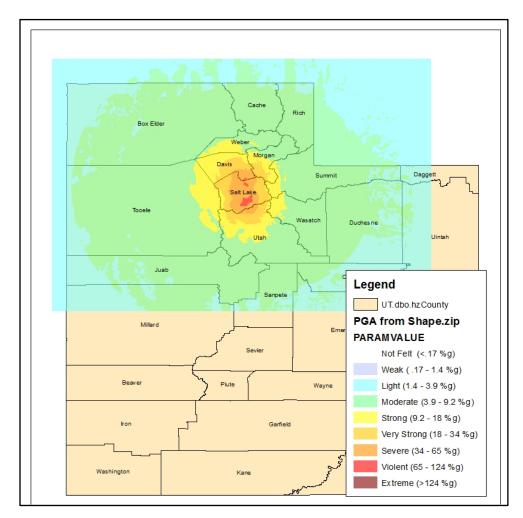


Figure 3.1 Utah ShakeOut ShakeMap Intensity Map (source: <u>https://earthquake.usgs.gov/scenario/product/shakemap-</u> <u>scenario/uulegacyshakeoutff_se/us/1465519638328/download/intensity.jpg</u>)




Figure 3.3 Utah State County Boundary Map (Source: https://geology.com/county-map/utah.shtml)

A more comprehensive approach to determining which counties to include will require the download of ShakeMap GIS data. From the ShakeMap download page, download the general-purpose GIS shape files stored as "Shape.zip"⁵. For later use, it might also be useful to download the XML grid file of ground motions.

Unzip the Shape.zip file and extract the PGA shape file data. In ArcGIS, create a new project, add County boundary data of your choice (e.g., from the Hazus state database or from ESRI Data and Maps for ArcGIS "USA Counties.lyr") and add the PGA layer, using the USGS-provided layer settings (PGA.LYR), if available (**Figure 3.4** for the Utah example). Identify all Counties containing areas of "Strong" or greater shaking (9.2% g, shown in yellow, and greater). For our Utah ShakeOut example, this includes eight counties (from north to south): Weber, Davis, Morgan, Summit, Salt Lake, Tooele, Utah and Wasatch Counties. By examining the GIS data, we were better able to determine that eastern Tooele County was impacted in the scenario and should be included in the study region.

⁵ In our Utah ShakeOut example, this file is available from:

https://earthquake.usgs.gov/scenario/product/shakemap-scenario/uulegacyshakeoutff_se/us/1465519638328/download/shape.zip

Figure 3.4 Utah State County Boundaries and the Utah ShakeOut ShakeMap PGA Map

3.2 Creating your Study Region

Now that you have determined which Counties to include, you can create your Hazus Study Region. Open Hazus. On the *Hazus-MH Startup* window (**Figure 3.5**), click the *Create a new region* radio button and click *OK*. When the *Welcome to the Create New Region Wizard* window appears, click *Next>* to continue.

Figure 3.5 Hazus-MH Startup Window

This will bring up the *Study Region Name* Window (**Figure 3.6**). Enter a meaningful name for your study region. Note that since the release of Hazus 3.0 and the migration of the Hazus database structure to SQL Server Spatial format, revised database name limitations apply. Your study region name can be no longer than 18 characters, and the use of certain characters (for example, a space or "-") is not allowed. Your study region name will appear on all pdf reports generated from your analysis. Including the optional regional description in the lower box can help differentiate between similar study regions when opening Hazus, but the description will not appear on pdf reports. When the name and optional description have been entered, click *Next>* to continue.

On the *Hazard Type* window (**Figure 3.7**), select the *Earthquake* radio button as your hazard type and click *Next>* to continue. On the *Aggregation Level* window (**Figure 3.8**), you are prompted to select the geographic level of aggregation for your study region; either State, County, or Census Tract. Running an entire State can require a significant amount of processing time and identifying all of the individual census tracts you want to include can be a challenge. The preferred method is to aggregate at the County level. Select the *County* radio button and click *Next>* to continue.

The next window to appear is the *State Selection* window (**Figure 3.9**). If the earthquake you are modeling only impacts one state, you can choose that state from the selection list by clicking on it. If you would like to model impacts to multiple states, select those states by Federal Emergency Management Agency

clicking on the first state and selecting any additional states while holding down the *Ctrl* key. Once you have selected all the desired states, click *Next>* to continue.

Study Region Name Each study region needs to be identified with a unique name.		-
Enter below a name which uniquely identifies your region. The name can be characters long.	up to 18	-
Salt_Lake_City		
Region description (optional):		
	A	

Figure 3.7 Hazard Type Window

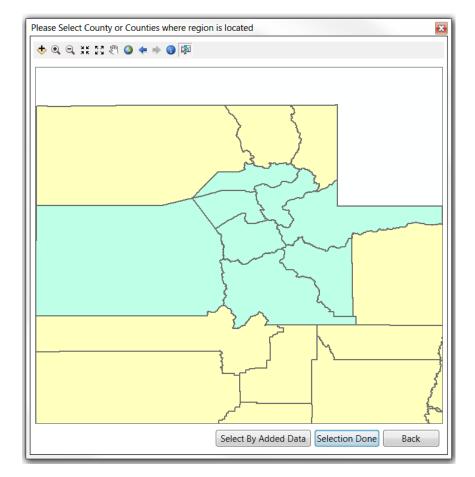
Create New Region	x
Hazard Type The hazard type controls the type and amount of data that will be aggregated. The hazard type selected affects the analysis options that will be available.	
Your study region can include one or more of the following hazards. Check below the hazard(s) you are interested in.	
✓ Earthquake	
Flood	
Hurricane	
Tsunami	
Notes: 1. Selection of hazards listed above depends upon the hazard modules installed.	
 Once a study region is built with a given hazard(s), it cannot be modified later on, in other words, you cannot add another hazard to it. Alternatively, you may re-create a similar region with different hazard(s). 	
3. If you are creating a Near Source only Tsunami region, please also check Earthquake checkbox.	
<back next=""> Cancel</back>	

Figure 3.8 Aggregation Level Window

Create New Re	gion	X
Aggregatio The aggr	on Level regation level defines the procedure by which the study is defined.	
	define your study region at one of the geographic levels. We call this the aggregation lease select below the aggregation level you want to use.	
0	State	
۲	County	
0	Census tract	
C	Census block	
C	Community (NFIP)	
C	Watershed	
	<back next=""> Cance</back>	a

Figure 3.9 State Selection Window

Create New Region State Selection The state selection narrows down the location of the region to be created to	o specific state(s).
Please select the state(s) for the study region you want to create. States (1 selected): Rhode Island (RI) South Carolina (SC) South Dakota (SD) Tennessee (TN) Texas (TX) Utah (UT) Vermont (VT) Virgin Islands US(TS Only) (VI) Virginia (VA) Washington (WA) West Virginia (WV) Wisconsin (WI) Wyoming (WY) Show map	
	<back next=""> Cancel</back>


If you selected County as the aggregation level, the next window to appear is the *County Selection* window (**Figure 3.10**). This window will list your selected State(s) on the left, and each State's Counties on the right. If you have one State in your Study Region, that state is already selected (highlighted in blue) in the State list. If you have more than one State in your Study Region, both will appear in the State list, and you may select Counties for inclusion in the Study Region one state at a time. For each State, select Counties by clicking on the County name, holding down the *Ctrl* key for multiple selections, as shown in **Figure 3.10** for the eight counties in Utah identified for ShakeOut scenario example.

Alternatively, you can select Counties geographically by clicking the *Show map* button on the *County Selection* window. This should bring up the map display as shown in **Figure**

3.11. Select each of the desired counties using the selection tool Revealed as selection box for the Counties of interest (click and drag) or select Counties individually by clicking on the County while holding down the Ctrl key. Note that hovering the mouse over the County will show its name. Once all Counties of interest have been selected, click the *Selection Done* button. This will return you to the *County Selection* window, and the Counties you selected on the map will be highlighted in the County list. Click *Next>* to continue. This will bring up the *Completing the Create New Region Wizard* window; click *Finish* to proceed. Hazus will now create the Study Region. During Study Region creation, various progress bars will appear on screen; a message box (**Figure 3.12**) will appear on screen once the process is complete.

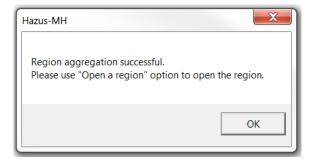

eate New Region County Selection The county selection de	efines the county o	r counties within pr	eviously sele	ected state(s), to include in the study region.
Please select the co States:		r the study region	-	eate.
Utah (UT)		San Juan Sanpete	*	Select all counties
	5	Sevier Summit Fooele Jintah		Deselect all counties
	X	Jitah Wasatch Washington Wayne Weber	III	Show map
	- T	otal: 8		Auto select all
				< Back Next > Cancel

Figure 3.10 County Selection Window

Figure 3.11 County Selection Map Window

Figure 3.12 Region Aggregation Successful Message

4. Hazard Scenarios

4.1 Different Earthquake Hazard Scenario Options

Hazus has six (6) different options for defining your seismic hazard

- 1. Historical epicenter defining your scenario based on a historical event
- 2. Source event defining your scenario based on a seismic event from the source event database
- 3. Arbitrary event defining your scenario based on fault type, event type, epicenter location, magnitude, depth, width, and fault rupture characteristics, used with an applicable attenuation function
- 4. Probabilistic hazard defining your scenario based on return period and magnitude or annualized loss
- 5. User-supplied hazard defining your scenario based on user supplied ground motion data.
- 6. USGS ShakeMap defining your scenario based on a USGS ShakeMap XML grid file for a recent, historic or scenario event

The preferred method of defining your hazard scenario is option 6 – USGS ShakeMap. In this SOP the means of defining your scenario using the USGS ShakeMap XML grid ground motion data will be covered in detail.

4.2 Defining Your Scenario Using USGS ShakeMap XML grid data

In Hazus 3.2, a new hazard interface was added to the Earthquake Scenario Wizard to allow a user with an internet connection to directly import United States Geological Survey (USGS) ShakeMap products. The Earthquake module has been integrated with USGS ShakeMaps allowing the import of ground motion maps from significant earthquake events. If a user does not wish to use the new direct import functionality, the Earthquake module also preserves the ability for users to import their own Hazus-compliant ShakeMap data. Instructions for how to import ShakeMap XML grid data are provided below; instructions for importing USGS ShakeMap data as "User-supplied hazard" may be found in the recently updated *Hazus Earthquake Model User Guidance* document.

4.2.1 ShakeMap Overview

ShakeMap is a product of the USGS Earthquake Hazards Program in conjunction with regional seismic networks. The ShakeMap website

(https://earthquake.usgs.gov/data/shakemap/) provides near-real-time maps and digital data of ground motion and shaking intensity following significant earthquakes, as well as predicted ground motions for hypothetical scenario events. In actual earthquakes, the ShakeMap may incorporate instrumental recordings of ground motions, as well as felt reports and detailed source parameter information, ensuring that the ShakeMap is the best product to use for loss estimation modeling in actual earthquakes. The loss estimates

produced using ShakeMap data within Hazus can assist emergency personnel to respond appropriately in areas of immediate need. Federal, state, local agencies, and non-profits organizations uses these maps for post-earthquake response and recovery, public and scientific information, preparedness exercises, and disaster planning.

A ShakeMap is a representation of the ground shaking produced by an earthquake. ShakeMaps already consider amplification based on local soil conditions, so incorporating a soils layer is not necessary when ShakeMaps are used. The information it presents is different from the earthquake magnitude and epicenter that are reported after an earthquake, because ShakeMap focuses on the ground shaking produced by the earthquake, rather than the parameters describing the earthquake source. So, while an earthquake has one magnitude and one epicenter, it produces a range of ground shaking levels at sites throughout the region depending on distance from the earthquake, the rock and soil conditions at sites, and variations in the propagation of seismic waves from the earthquake due to complexities in the structure of the Earth's crust. More detailed scientific information for these maps can be found at USGS ShakeMap website.

The ground motion map types required by Hazus for loss estimation analysis are:

- Peak Ground Acceleration (PGA) Maps, in units of gravity (g)
- Peak Ground Velocity (PGV) Maps, in units of inches/second (in/sec)
- Spectral Response Maps at 0.3 seconds (SA 0.3), in units of gravity (g)
- Spectral Response Maps at 1.0 seconds (SA 1.0), in units of gravity (g)

4.2.2 Using the ShakeMap Download Interface in Hazus

Once the study region has been created, use the following steps to acquire the appropriate ShakeMap.

1. In the study region, go to *Hazard --> Scenario--> Next* and choose *Define a new Scenario* as shown in **Figure 4.1.** Click *Next>* to continue.

Scenario Wizard	×
Earthquake Hazard Scenario Selection This wizard assists you in defining a new scenario, activating an old scenario, deleting an existing scenario, or defining hazard maps.	
Scenario event:	
 Define a new scenario 	
O Use an already pre-defined scenario	
O Delete an existing scenario	
O Define hazard maps	
< Back Next >	Cancel

Figure 4.1 Earthquake Hazard Scenario Selection Window

2. On the *Seismic Hazard Type Selection* Window (**Figure 4.2**), choose *USGS ShakeMap...* and click *Next*> to continue.

				X
< Ba	ck	Next>	Ca	incel
	<ba< td=""><td>< Back</td><td>< Back Next ></td><td>< Back Next > Ca</td></ba<>	< Back	< Back Next >	< Back Next > Ca

3. The ShakeMap Download window will open (Figure 4.3). It may take a few moments for Hazus to search the USGS website for available ShakeMap data before the window appears. During this time, users may see a progress window (Figure 4.4). When the ShakeMap Download window opens, by default, the ShakeMap *Events* radio button will be selected in the upper left. Users can select a ShakeMap event for download from the left pane (recent earthquakes meeting the search various criteria identified at the top right will automatically appear in the list in the left pane), click the ShakeMap Scenarios radio button in the upper left to generate a list of applicable scenarios (Figure 4.5), or adjust the search parameters as needed to capture an event of interest. When the ShakeMap Scenarios option is selected, the Earthquake Time Frame search parameters are not applicable and will be removed from the menu. For each ShakeMap, the Selected ShakeMap Properties window includes the event's url; clicking the url will take you to the USGS event webpage which is particularly helpful for selecting an appropriate scenario. Highlighting an event in the left pane will display the properties and details in the two windows on the middle and lower right.

In addition to adjusting the search parameters, the user can also make several other adjustments. Just above the *Selected ShakeMap Properties* pane, there are two *Study Region Upload Options (Exclude Gridcells Outside Study Region* and *Overwrite Existing ShakeMap Grid Data*); by default, both of these options are checked. It is recommended that you keep these default settings. There is also an *Earthquake Direction* option, which is checked, by default, to select *Apply Geomean*. Checking this box reduces the input ShakeMap standard peak ground motions by 15%. Geomean ground motions are the Hazus standard (the original USGS ShakeMap "hazus.zip" file applied a 15% reduction to peak ground motions to approximate geomean specifically for use in Hazus), and recent studies for the Hazus 2PAGER product have confirmed that geomean ground motions produce loss estimates that are in better agreement with recent historic events than peak motions. Accordingly, it is recommended that the *Apply Geomean* box remain checked.

ShakeMap Events	Online ShakeMap Search Pa	rameters		
ShakeMap Scenarios	Rectangle		Earthquake Magnitude	
Select from Available ShakeMap Events	Max Latitude 37.90583896	4	Min Magnitude 5	Max Magnitude 9.5
- Available Earthquake Data	Min Longitude	Max Longitude	Earthquake Time Frame	
M 5.7 - Northern California M 5.4 - San Francisco Bay area, California	-123.108043307	-121.46921704	Start Time: Today Minus	100000 Days
– M 5.8 - San Francisco Bay area, California – M 5.8 - San Francisco Bay area, California	Min Latitude 37.45438395	4	Earthquake Direction	Search
	Study Region Upload Option	s		
	Exclude Gridcells Outside S	tudy Region	Overwrite Existing Shall	keMap Grid Data
	Selected ShakeMap Properties			
	Selected ShakeMap Properties			

Figure 4.3 ShakeMap Download Window - ShakeMap Events

Figure 4.4 ShakeMap Event List Processing Message

Figure 4.5 ShakeMap Download Window – ShakeMap Scenarios

) ShakeMap Events	Onl	ne ShakeMap	Search Parameters	
ShakeMap Scenarios	Re	ctangle		Earthquake Magnitude
elect from Available ShakeMap Scenarios	M	ax Latitude 37	7.905838964	Min Magnitude 5 Max Magnitude 9.5
- Available Earthquake Data	м	in Longitude	Max Longitude	
-M 5.1 Scenario Earthquake - Haywired aftershock		23.108043307	-121.46921704	
 M 5.4 Scenario Earthquake - Haywired Aftershock M 7.1 Scenario Earthquake - Haywired M7.05 Scenario 				Earthquake Direction
– M 7.1 Scenario Earthquake - Haywred M7.05 Scenario	M	in Latitude 37	7.454383954	Apply Geomean Search
– M 7.1 Scenario Earthquake - Hayward: HS+HE				V Apply Geomean
 M 7.3 Scenario Earthquake - Hayward: HN+HS M 6.5 Scenario Earthquake - Mount Diablo Thrust South 	Chu	dy Region Uplo	- d Ontines	
– M 6.5 Scenario Earthquake - Mount Diablo Thrust South – M 6.7 Scenario Earthquake - Mount Diablo Thrust North CFM		, ,	ad Options Outside Study Region	Overwrite Existing ShakeMap Grid Data
– M 7.4 Scenario Earthquake - San Andreas (Peninsula)	V (Exclude Gridcells	Outside Study Region	Verwrite Existing Snakewap Grid Data
– M 7.0 Scenario Earthquake - Hayward (So)				
 M 6.5 Scenario Earthquake - Las Positas M 6.9 Scenario Earthquake - Calaveras (No) 	Selec	ted ShakeMap F	roperties	
– M 6.9 Scenario Earthquake - Greenville (No)		Properties	Value	
- M 6.7 Scenario Earthquake - Mount Diablo Thrust	•	url	https://earthquake.usgs.gov	//scenarios/eventpage/ushaywiredm7.05_se
 M 7.0 Scenario Earthquake - Greenville M 6.8 Scenario Earthquake - Hayward-Rodgers Creek; Hay 		title	M 7.1 Scenario Earthquake	- Haywired M7.05 Scenario
– M 6.9 Scenario Earthquake - Great Valley 7		place	Haywired M7.05 Scenario	
- M 7.0 Scenario Earthquake - Calaveras North + Central + Sc		mag	7.05	-
 M 7.0 Scenario Earthquake - Calaveras North + Central M 6.9 Scenario Earthquake - Calaveras North 	Seler	ted ShakeMap E)otails	
– M 7.5 Scenario Earthquake - N. San Andreas; Peninsula + S	-	Properties	Value	
 M 6.7 Scenario Earthquake - Mount Diablo Thrust combine M 7.5 Scenario Earthquake - N. San Andreas North Coast 	•		shakemap-scenario	
M 7.5 Scenario Earthquake - N. San Andreas North Coast M 7.0 Scenario Earthquake - Hayward-Rodgers Creek; Hay	,	type status	UPDATE	
- M 6.6 Scenario Earthquake - Hayward-Rodgers Creek; Hay			8	
M 7.1 Scenario Earthquake - Hayward_7.05_dirnw_se		depth	-	
		event-des	Haywired M7.05 Scenario	
		event-type	SCENARIO	
		eventsource	us	
4			ted ShakeMap Grid Data	Browse for Existing ShakeMap Grid Data Cancel

For some events, the USGS may offer multiple grid files for download. In this case, a popup window (*Multiple grid.xml for One event*) will appear with a list of available files (**Figure 4.6**) asking the user to select one. A "preferred weight" value is provided for each file, and it is recommended the user select the largest preferred weight.

If a grid.xml file has been downloaded (for a catastrophic planning scenario for instance) and is stored on the local machine, users can browse to its file storage location for import using the *Browse for Existing ShakeMap Grid Data* button at the bottom of the *ShakeMap Download Window*.

•	l Mul	tiple grid.	xml for One Ev		X			
	There	e are multip	le grid.xml files fo	or the event you selected. Che	oose one in the data grid view.			
		Sno	Version	Preferred Weight	Process Timestamp	•		
	Þ	1	1	10000000	2017-01-28T11:17:58.000Z	Ξ		
		2	1	181	2017-02-08T21:30:38Z			
		3	2	181	2017-02-07T23:16:10Z	Ŧ		
	ОК							

Figure 4.6 ShakeMap Multiple grid.xml for One Event Window

4. Once an event is selected in the pane on the left (Figure 4.7), click Download Selected ShakeMap Grid Data to import the ShakeMap data into Hazus. For some ShakeMaps, a progress notice may appear to indicate the download is taking place (Figure 4.8). Although this progress message may indicate that Hazus is not responding, it does not mean the download has stopped. Please be patient; download and processing time will vary depending on the size of the event file and the speed of the user's internet connection.

ShakeMap Events	On	line ShakeMap S	earch Parameters	
ShakeMap Scenarios	R	ectangle		Earthquake Magnitude
Select from Available ShakeMap Events		Max Latitude 37	905838964	Min Magnitude 5 Max Magnitude 9.5
Available Earthquake Data	I	1in Longitude	Max Longitude	Earthquake Time Frame
M 5.7 - Northern California M 5.4 - San Francisco Bay area, California	-	123.108043307	-121.46921704	Start Time: Today Minus 100000 Days
M 5.8 - San Francisco Bay area, California	1	/lin Latitude 37	454383954	Earthquake Direction Image: Apply Geomean Search
			Outside Study Region	Overwrite Existing ShakeMap Grid Data
	Sele	cted ShakeMap P	•	
		Properties	Value	/
		url title	M 5.8 - San Francisco Bay	v/earthquakes/eventpage/usp000155j
		place	San Francisco Bay area, C	
		mag	5.8	
	Sele	cted ShakeMap D		P
		Properties	Value	4
	•	type	shakemap	
		status	UPDATE	
		depth	15	
		event-descr		
		event-type	ACTUAL	
		eventsource	atlas	
			07.710	
		Download Selec	ted ShakeMap Grid Data	Browse for Existing ShakeMap Grid Data Cancel

Figure 4.7 ShakeMap Download Window with Available Grid Data

Figure 4.8 ShakeMap Download Processing Message

Once the download is complete, the User-defined Hazard Option Window (Figure 4.9) will open, automatically populated with ground shaking map layer names and the event magnitude. The user will need to confirm the remaining event parameters imported from ShakeMap before completing the wizard; clicking Next> will bring up

the Hazard Scenario Event Name window (Figure 4.10), automatically populated with the event name from the ShakeMap data. The event name will include the event magnitude, location, and the ShakeMap version number. Tracking the version number is particularly important when sharing results, as significant events (or events in areas with limited seismic instrumentation) may have multiple ShakeMap releases which could produce highly variable loss estimates. Clicking *Next>* again will bring up the *Completing the Scenario Definition Wizard* Window (Figure 4.11), which summarizes the ShakeMap scenario settings. Click *Finish* to complete the scenario definition.

Figure 4.9 ShakeMap User-Defined Hazard Options Window

cenario Wizard					X		
User-defined Hazard Option Define other parameters for the User-defined Event option							
Ground Shaking	Liquefaction	Landslide	Surface Fault Ruptur	е			
<u>P</u> GA	countour map	eqSrPG	A				
PGV	countour map	eqSrPG	V	•	-		
-Spectral F	lesponse Map	os:					
At 0. <u>3</u>	seconds:	eqSrSA	03		r		
At 1.0	se <u>c</u> onds:	eqSrSA	10				
<u>M</u> agnitude gener	ating the even	t 5.8					
			< <u>B</u> ack	<u>N</u> ext >	Cancel		

Figure 4.10 ShakeMap Hazard Scenario Event Name Window

cenario Wi	izard	X
	Scenario Event Name le the name of the scenario event	
F	inter a name for the scenario event (40 characters max.)	
L	M5.8-Livermore, California v1	
	< Back Next > Cance	

Scenario Wizard	X
	Completing the Scenario Definition Wizard
100	You have successfully completed the Scenario Definition.
	You specified the following settings: Hazard Type = User Supplied Magnitude = 5.800000 Ground Shaking Maps PGAMap = eqSrPGA PGVMap = eqSrPGV Spectral 0.3 sec = eqSrSA03 Spectral 1.0 sec = eqSrSA10
	To close the wizard, click Finish
	< Back Finish Cancel

Figure 4.11 Completing the Scenario Definition Wizard Window

It should be noted that USGS may limit the types of ShakeMap data available for download into Hazus. By default, Hazus will search for events occurring within the last 90 days, with a magnitude of 5.0 or greater. The 90-day window and the geographic window can be manually adjusted within Hazus (see Step 3 above), however it may benefit the user to check the USGS "Latest Earthquakes" page

(<u>https://earthquake.usgs.gov/earthquakes/map/</u>) for event availability prior to creating a study region (scenario ShakeMaps may be found as described in **Section 1**). It may also be the case that a ShakeMap of interest may not be discovered by the Hazus ShakeMap download tool due to incompatibility of the study region boundary and the geography of the ShakeMap.

4.3 Hazard Data Layers

If you have additional hazard data available for your scenario (e.g., liquefaction susceptibility, landslide susceptibility, soils, groundwater depth, etc.), you should add it at this time.

Open the study region you have created. To add your hazard data (formatted according to the instructions in Section 2.3), go to *Hazard --> Data Maps*. On the *Data Maps Dialog* window (**Figure 4.12**), click on *Add map to list...*, and navigate to location of the ArcGIS personal geodatabase containing your hazard map(s). On the *Data Map Attributes* window (**Figure 4.13**), type a name for hazard layer you plan to use ("LiqSusc", for example),

Federal Emergency Management Agency

choose the corresponding map type from the *Map type* pull-down list, and highlight the *Table name* corresponding to the data in your geodatabase.

1	Data Maps Dial	og							X
	ld	Name	МарТуре	IsCurrent	Database	Database	Table Name	Table Ti	me (🔺
									Ε
									-
	•			111					•
	Add map	o to list	Remove n	nap from list		Sort		Close	

Figure 4.12 Data Maps Dialog Window

Figure 4.13 Data Map Attributes Window

Data Map Attribut	tes X
Map name:	LiqSusc
Map type	Liquefaction 👻
Table name :	Landslide_Sucseptibility Landslide_Sucseptibility_Shape_Index Liquefaction_Sucseptibility_Shape_Inde Soils Soils_Shape_Index Water_Table_Depth Water_Table_Depth OK Cancel

Repeat this process for each hazard map you want to add. Once all of your hazard maps are added, close the data maps dialog box and link them to your scenario by going to *Hazard --> Scenario... --> Next > --> Define hazards maps* (Figure 4.14) --> *Next >*. From the *Define Hazard Maps Option* window (Figure 4.15), select any hazard maps you have added from the pull-down list under each map type.

Figure 4.14 Eau	rthquake Hazard	Scenario Se	election \	Window
-----------------	-----------------	--------------------	------------	---------------

Earthquake Hazard Scenario Selection This wizard assists you in defining a new scenario, activating an o existing scenario, or defining hazard maps.	ld scenario, deleting an	
Scenario event Define a new scenario Use an already pre-defined scenario Delete an existing scenario Define hazard maps		
< Back	Next> Car	ncel

Figure 4.15 Define Hazard Maps Option Window

Scenario Wizard	X
Define Hazard Maps Option Define soil, liquefaction, landslide, and water depth maps to	be used in analysis
Soil map: Set To: Liquefaction map: LiqSusc Landslide map: Set To: Water depth map: Set To: Vater depth map:	Class: Class: 0 • Class: 0 • Value 5 Feet
< Back	Next > Cancel

Once you've selected each of your hazard maps, click *Next* > to continue and you will be given a chance to review a summary of your hazard map settings (**Figure 4.16**). You should see the table name for any data map that you've added (e.g., "LiqSusc" for Liquefaction), and the default values for any map for which data was not added (e.g., 0 for Landslide). Once you've reviewed the settings click *Finish*. Hazus will now execute a review process which clips your hazard map to the Study Region limits and populates various tables. If your study area is large, this process could take a while. Once this process is complete, you've successfully attached your hazard data to the Study Region. Current hazard maps may be viewed by going to *Hazard --> Show Current --> Current Hazard Maps*, clicking on the Map type in the left-hand column, then clicking the Map button. Click Close to view your selected map(s) on screen.

Scenario Wizard		X
	Completing the Scenario Definition Wizard	
100	You specified the following hazard maps:	
	Soil = D Liquefaction = LiqSusc Landslide = 0 Water Depth = 5.0	*
	To close the wizard, click Finish	
	< Back Finish	Cancel

Figure 4.16 Completing the Scenario Definition Wizard Window

Once your scenario has been defined, and all hazard maps are incorporated, you are ready to run the analysis. To execute the analysis, go to *Analysis --> Run...* to bring up the *Analysis Options* window (**Figure 4.17**). Select the analysis modules you wish to run either by clicking the *Select All* button or by selecting individual modules you wish to run by clicking in the box to the left of each module name. If you *Select All* modules, you will be prompted and asked if you want to create contour maps. This process can take several hours, so it is recommended that you skip this process. If contour maps are desired, you can always come back and run them later. Once you have selected the desired analysis modules, click *OK* to proceed, and then click *Yes* to confirm your analysis options (**Figure 4.18**).

When the analysis is complete, Hazus will open a message box indicating the length of time the analysis required (Figure 4.19). At this point, you may explore the results from within Hazus, or use the Hazus Export Tool to export a pre-selected set of data and results as described in the next section. It is strongly recommended that you export the Hazus "Global Summary Report" for reference. Go to Results \rightarrow Summary Reports... (Figure 4.20), click on the Other tab (Figure 4.21), then click on Global Summary Report and click View to generate the report. It may take a few minutes for Hazus to generate the 22-page "Global Summary Report" (Figure 4.22), which may be exported as a PDF file. To export

the file, click on the Export Report button (¹²⁾) in the upper left-hand corner to bring up the *Export* window (**Figure 4.23**). Click *OK* to bring up the *Export Options* window (**Figure 4.24**) and click *OK* to choose the location and file name for the report. Other reports that may be of use are the *Potable Water System Performance Report* (accessible from the *Lifelines* tab, *Performance* sub-menu) and *Debris Generated Report* (accessible from the *Induced* tab).

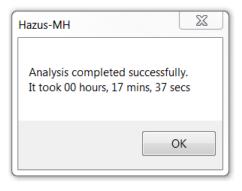

Analysis Options	
Direct Social Losses\	
Inventory View	Select All
	Deselect All
Military Installation	
- Advanced Engineering Bldg Mode	
🖃 🗹 Induced physical damage	
Fire following	
- 🗹 Debris	
Direct Social Losses	
∃ I Casualties	
Shelter	
- Indirect economic impact	ОК
🗄 🗆 Contour maps	
	Cancel
Number of modules selected = 179	
Blue text indicates modules which need to be (re-) analyzed since vis-a-vis the hazard scenario and/or the analysis parameters.	they are not current

Figure 4.17 Analysis Options Window

Figure 4.18 Confirm Analysis Options Window

Hazus-MH
Run analysis with the options selected?
Yes No

Figure 4.19 Analysis Completion Message

Figure 4.20 Earthquake Summary Reports Window (Inventory Tab)

Hazus-MH Earthquake Summary Reports	X
Inventory Buildings Lifelines Induced Losses Other	
Please select the summary report(s) to view:	
Building Stock Dollar Exposure by Occupancy Transportation Systems Dollar Exposure Utility System Dollar Exposure	
View	
	Close

Hazus-MH Earthquake Summary Reports	X
Inventory Buildings Lifelines Induced Losses Other Please select the summary report(s) to view:	
View	se

Figure 4.21 Earthquake Summary Reports Window (Other Tab)

Figure 4.22 Global Summary Report Window

Figure 4.23 Export Report Window

X
ОК
Cancel

Figure 4.24 Export Options Window

Export Option	ıs			X
Page Ran	ge			
🔘 Page F	Range:			
From:	1	To:	1	
	ОК		Cancel	

5. Data Preparation

5.1 Use of the FEMA Hazus Export Tool Description / Intent:

To facilitate mapping of Hazus results outside of Hazus, FEMA Region VIII (Jesse Rozelle, Austen Cutrell and Jordan Burns) created the *Hazus Export Tool* to export GIS layers and other data from completed Hazus study regions. The tool is compatible with Hazus versions 3.1, 3.2, 4.0, and 4.2. It currently works for the Hazus flood⁶, earthquake, and hurricane models; Hazus Tsunami model export functionality will be added in late 2018. The current version of the *Hazus Export Tool* is Version 6.0, released 12/21/2017.

Instructions:

The *Hazus Export Tool* is provided with the Hazus software and can be found in the "C:\Program Files (x86)\Hazus-MH\BIN\Tools" directory (**Figure 5.1**). It is provided as an ArcGIS tool that is automatically added to the ArcGIS Toolbox by Hazus, when Hazus is in use. It can also be run directly using Python. In order to use the export tool, make sure that the python script (Hazus_Export.py) and ArcGIS Toolbox file (Hazus_Export.tbx) are located in the same folder.

File Edit	View Tools Help					
Organize 🔻	Open with Burn	New folder			•	0
Name	<u> </u>	Date modified	Туре	Size		
AddPern	mission.exe	2/23/2018 11:10 A	Application	6 KB		
🌛 Hazus_E	xport.py	2/23/2018 11:10 A	Python File	60 KB		
😂 Hazus_E	xport.tbx	2/23/2018 11:10 A	ArcGIS Toolbox	13 KB		
📜 Hazus_E	xport_Readme.pdf	2/23/2018 11:10 A	Adobe Acrobat D	176 KB		
Microsof	ft.WindowsAPICodePack.dll	2/23/2018 11:10 A	DLL File	96 KB		
Microsof	ft.WindowsAPICodePack.Shell.dll	2/23/2018 11:10 A	DLL File	530 KB		
📑 RunAsAd	dmin.exe	2/23/2018 11:10 A	Application	14 KB		

Figure 5.1 Hazus Export Tool Directory Location

⁶ If using the export tool for Hazus flood results, note that the exported results are only valid for a **single return period** flood event.

1) When Hazus is in use, the *Hazus Export Tool* can be accessed from ArcToolbox, as shown in **Figure 5-2**.

ArcToolbox □ × 🚳 ArcToolbox 🗄 🜍 3D Analyst Tools 🗄 📦 Analysis Tools H 🕲 Cartography Tools 🗄 🌍 Conversion Tools 🗄 📦 Data Interoperability Tools 🗄 📦 Data Management Tools 🗄 📦 Editing Tools H 🕞 Geocoding Tools 🗄 📦 Geostatistical Analyst Tools 🖃 💐 Hazus_Export Hazus_Expor Linear Referencing Tools 🗄 🚳 Multidimension Tools 🗄 📦 Network Analyst Tools 🗄 📦 Parcel Fabric Tools H Schematics Tools 🗄 🌍 Server Tools ■ Space Time Pattern Mining Tools 🗄 🚳 Spatial Analyst Tools 🗄 🚳 Spatial Statistics Tools H STRACKING Analyst Tools

Figure 5.2 ArcToolbox Including Hazus Export Tool

 Double click on the Hazus Export Tool (Hazus_Export) inside the toolbox to launch the tool and bring up the Hazus_Export Window (Figure 5.3).

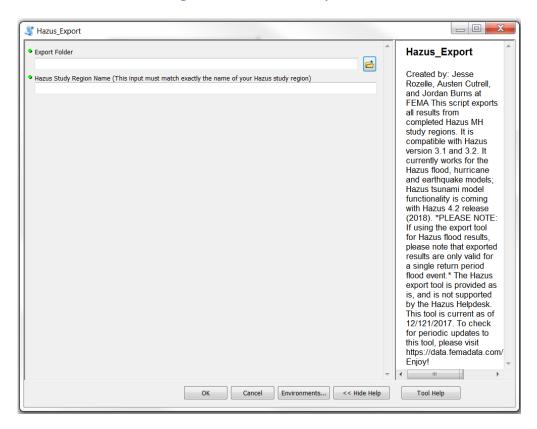
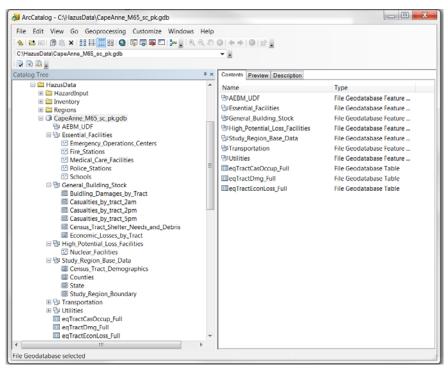


Figure 5.3 Initial Hazus Export Window

3) Click on the *Browse File* button and navigate to the export folder where you would like your geodatabase of results to be stored, and then enter the name of the study region from which you would like to export results (Figure 5.4). Note that the study region name must be identical to the name used in Hazus. Click *OK* to begin the export process. Progress will be reported to the screen, as shown in Figure 5.5. Once the export has been successfully completed (Figure 5.6), click *Close* to exit the *Hazus Export Tool*.

Figure 5.4 Hazus Export Tool Window with Export Folder and Study Region Specified

💐 Hazus_Export	
Export Folder C:\HazusData Hazus Study Region Name (This input must match exactly the name of your Hazus study region) CapeAnne_M65_sc_pk	Hazus Study Region Name (This input must match exactly the name of your Hazus study region) No description available
OK Cancel Environments << Hide Help	Tool Help



ecuting Hazus_Export	Cancel
188	< > Detail:
Close this dialog when completed successfully	
Executing: HazusExport C:\HazusData CapeAnne M65 sc pk	
Start Time: Tue Sep 25 12:17:41 2018	
Running script HazusExport	
Hazus SQL Server SDE connection created at C:\HazusData\CapeAnne_M65_sc_pk.sde	
Study region CapeAnne_M65_sc_pk hazard type= Earthquake	
Study region created 2018-09-14 12:26:14	
Creating geodatabase C:\HazusData\CapeAnne_M65_sc_pk.gdb	
Exporting Hazus Earthquake Study Region Results	
Exporting essential facility results	
Exporting transportation results	
No highway tunnels found	
No light rail bridges found	
No light rail tunnels found	
Exporting utility system results	
No natural gas pipelines found	
No oil pipelines found	
No potable water pipelines found	
No waste water pipelines found	
Exporting high potential loss facility results	
No dams found	
No levees found	
No military facilities found	
Exporting Advanced Engineering Building Module results	
No AEBM facilities found	
Exporting User Defined Structures results	
No user defined structures found	
Exporting general building stock results	

Hazus_Export Completed Close << Details Close this dialog when completed successfully Hazus SQL Server SDE connection created at C:\HazusData\CapeAnne_M65_sc_pk.sde Study region CapeAnne M65_sc pk hazard type= Earthquake Study region created 2018-09-14 12:26:14 Creating geodatabase C:\HazusData\CapeAnne M65 sc pk.gdb Exporting Hazus Earthquake Study Region Results..... Exporting essential facility results Exporting transportation results No highway tunnels found No light rail bridges found No light rail tunnels found Exporting utility system results No natural gas pipelines found No oil pipelines found No potable water pipelines found No waste water pipelines found Exporting high potential loss facility results No dams found No levees found No military facilities found Exporting Advanced Engineering Building Module results No AEBM facilities found Exporting User Defined Structures results No user defined structures found Exporting general building stock results Elapsed Hazus Export time : 648.21 seconds Completed script HazusExport. Succeeded at Tue Sep 25 13:05:42 2018 (Elapsed Time: 10 minutes 48 seconds)

Figure 5.6 Hazus Export Execution Reporting - Completed

4) The Hazus Export Tool will export results for all modules that have been executed in the selected Hazus Study Region into a clean geodatabase with the same name as the Study Region. Specific layers may be viewed using ArcCatalog, as shown in Figure 5.7.

Figure 5.7 ArcCatalog Review of Exported Geodatabase Contents

Federal Emergency Management Agency

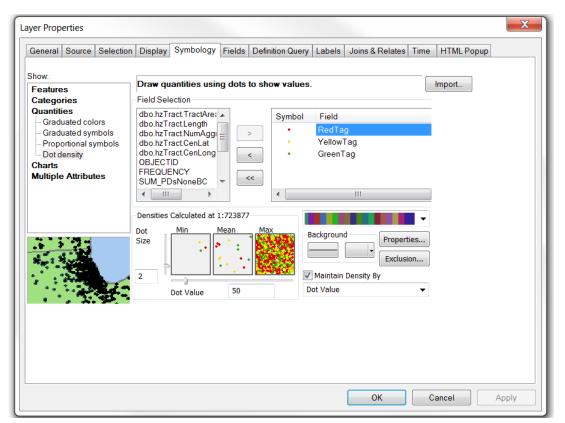
5) The *Hazus Export Tool* will export results from the latest scenario run in your Study Region. If you modify and re-run your Study Region analysis in Hazus, you will need to re-run the *Hazus Export Tool* to capture the updated results. Caution should be used, as the *Hazus Export Tool* will overwrite the results geodatabase if you export the same study region to the same export folder.

5.2 Interpreting and Communicating Results

This section provides a description of the various layers exported by the *Hazus Export Tool*, provides field definitions for those layers, and recommends symbology for presenting the results using ArcGIS (i.e., outside Hazus).

5.2.1. Estimated Building Inspection Needs

*This layer will be created using the file geodatabase feature class named "Building_Damages_by_Tract", which is part of the "General_Building_Stock" file geodatabase feature dataset created by the *Hazus Export Tool*.


The intent of this layer is to depict building counts by extent of damage or tagging (complete/red, extensive/yellow or slight and moderate/green) and the number of building inspectors that would be required in the event of an earthquake in the study region. There is a critical need to inspect the safety of buildings after an earthquake. These inspections include high priority needs for shelters and other essential facilities, as well as keeping survivors out of dangerous buildings and moving them back into buildings that are safe. The purpose of this layer is to support the analysis of potential needs and gaps in the number and availability of building inspectors. Especially in significant events, a large gap may exist between the numbers of available building inspectors and the total number of building requiring inspection. FEMA provides training for the "Post-Disaster Inspection of Buildings" through the Applied Technology Council.

- 1. Add the "General_Building_Stock" feature dataset to your ArcGIS workspace to access the "Building_Damages_by_Tract" feature class. This census tract layer includes building damage data as attributes, as follows:
 - a. SUM_PDsNoneBC total count of buildings in each census tract in the "None" damage state
 - b. SUM_PDsSlightBC total count of buildings in the "Slight" damage state
 - c. *SUM_PDsModerateBC* total count of buildings in the "Moderate" damage state
 - d. *SUM_PDsExtensiveBC* total count of buildings in the "Extensive" damage state
 - e. *SUM_PDsCompleteBC* total count of buildings in the "Complete" damage state
 - f. *GreenTag* Total count of green-tagged buildings in the census tract; this is equal to the sum of the number of buildings in the Slight and Moderate damage states.

- g. *YellowTag* Total count of yellow-tagged buildings in the census tract; this is equal to the number of buildings in the Extensive damage state
- h. *RedTag* Total count of red-tagged buildings in the census tract; this is equal to the number of buildings in the Complete damage state

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window (Figure 5.8), select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Dot density". In the Field Selection pick list, double-click on the fields *RedTag*, *YellowTag* and *GreenTag* (in that order, to ensure that the red and yellow tags are plotted on top of the green ones) to include them in the thematic map. Double-click on the "Symbol" to the right of each field name to open the Symbol Selector; adjust the color of each symbol accordingly. The dot size and dot value will vary from scenario to scenario. Click "OK" to accept your settings and draw the map.

Figure 5.8: Layer Properties Window for the Building_Damages_by_Tract Feature Class

3. In addition to mapping the locations of red, yellow and green tagged buildings, it may be helpful to estimate the number of building inspectors required. While the actual rate of inspection will vary based on a number of conditions, including access to damaged areas, complexity of the damage distribution, inspector availability, and the occurrence of aftersbacks, approximate "rules of thumb" were developed.

and the occurrence of aftershocks, approximate "rules of thumb" were developed Federal Emergency Management Agency with input from experienced inspectors to support FEMA's Wasatch Fault Scenario, as follows:

- Red tagged buildings a two-man inspection team could inspect 10 red tagged buildings per day; during a 30-day response, they could inspect 300 buildings. Estimate the required number of inspectors as [the number of red tagged buildings/150].
- Yellow tagged buildings a two-man inspection team could inspect 5 yellow tagged buildings per day; during a 30-day response, they could inspect 150 buildings. Estimate the required number of inspectors as [the number of yellow tagged buildings/75].
- Green tagged buildings a two-man inspection team could inspect 10 green tagged buildings per day; during a 30-day response, they could inspect 300 buildings. Estimate the required number of inspectors as [the number of green tagged buildings/150].

To determine the total number of red, yellow and green tagged buildings, right click on the "Building_Damages_by_Tract" feature class name, and open the attribute table. Scroll to the GreenTag column, right click on the column header to access the context menu, and select "Statistics..." to view field statistics, and note the value reported as the sum. Repeat for "YellowTag" and "RedTag". Example results for the Wasatch Fault M7.0 scenario earthquake are given in **Table 5.1** below. These estimates do not account for potential re-inspections required as a result of significant aftershocks.

These types of estimates are useful for planning purposes and are important for emergency response; keeping people out of hazardous buildings is critical because aftershocks could cause further damage while allowing people back into buildings that are safe to occupy supports recovery. Identifying the number of inspectors needed helps responding agencies gauge requirements for training programs and mutual assistance.

Hazus Damage State	Building Tag	# Buildings	# Inspectors Required
Slight and Moderate	Green	175,500	1,170
Extensive	Yellow	57,600	768
Complete	Red	63,600	424
TOTAL		296,700	2,362

Table 5.1 Estimating Building Inspection Needs – Wasatch Fault M7.0 Scenario Example

4. The "Building_Damages_by_Tract" feature class data may also be used to estimate the potential number of Individual Assistance (IA) claims. Building counts by damage state (SUM_PDsSlightBC, SUM_PDsModerateBC, SUM_PDsExtensiveBC and

SUM_PDsCompleteBC) can be associated with IA PDA damage classes, as shown in **Table 5.2**.

Hazus	FEMA IA PDA	
Damage State	Damage Class	FEMA IA PDA Damage Class Definition
Slight	Affected	Some damage to the structure and contents, but still habitable
Moderate	Minor	Home is damaged and uninhabitable, but may be made
		habitable in short period of time with repairs
Extensive	Major	Substantial failure to structural elements of residence (e.g.,
		walls, floors, foundation), or damage that will take more than
		30 days to repair
Complete	Destroyed	Total loss of structure, structure is not economically feasible to
		repair, or complete failure to major structural components
		(e.g., collapse of basement walls/foundation, walls or roof)

Table 5.2 Hazus Damage States and FEMA IA PDA Damage Classes

5.2.2 Life Threatening Injuries and Fatalities

*This layer will be created using the file geodatabase feature class named "Casualties_by_tract_2pm" (or you can use "Casualties_by_tract_5pm" or "Casualties_by_tract_2am", depending on the time of day of your scenario), which is part of the "General_Building_Stock" file geodatabase feature dataset created by the *Hazus Export Tool*.

- 1. Add the "General_Building_Stock" feature dataset to your ArcGIS workspace to access the "*Casualties_by_tract_2pm*" feature class. This census tract layer includes casualty estimates for a day-time event, at four injury severity levels, as follows:
 - a. *SUM_Level1Injury* total number of minor injuries, i.e., injuries treated with basic first aid (Injury Severity 1) in each census tract in a day-time event
 - b. *SUM_Level2Injury* total number of non-life-threatening injuries, i.e., treat and release injuries (Injury Severity 2)
 - c. *SUM_Level3Injury* total number of life-threatening injuries. i.e., injuries requiring hospital admissions (Injury Severity 3)
 - d. SUM_Level4Injury total number of fatalities (Injury Severity 4)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window (Figure 5.9), select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Dot density". In the Field Selection pick list, double-click on the fields SUM_Level3Injury and SUM_Level4Injury to include them in the thematic map. Double-click on the "Symbol" to the right of the field name to open the Symbol Selector; symbolize fatalities (Level 4 injuries) using red dots, and life-threatening injuries (Level 3 injuries) using orange dots. The dot size and dot value will vary from scenario to scenario. Click "OK" to accept your settings and draw the map.

General Source Selection	
Features Categories Quantities Graduated colors Graduated symbols Proportional symbols Dot density Charts Multiple Attributes	Symbol Field dbo.hzTractTractArei Symbol dbo.hzTractCentagth > GBJECTID FREOUENCY < SUM_Level11njury
	Densities Calculated at 1:723877 Dot Size Min Mean Max 2 Dot Value 1 Background Properties Exclusion V Maintain Density By Dot Value \checkmark

Figure 5.9: Layer Properties Window for the Casualties_by_tract_2pm Feature Class

5.2.3 Direct Building Economic Loss

*This layer will be created using the file geodatabase feature class named "Economic_Losses_by_Tract", which is part of the "General_Building_Stock" file geodatabase feature dataset created by the *Hazus Export Tool*.

- 1. Add the "General_Building_Stock" feature dataset to your ArcGIS workspace (if it not already loaded) to access the "*Economic_Losses_by_Tract*" feature class. This census tract layer includes direct economic loss estimates resulting from damage to buildings represented by the Hazus General Building Stock inventory, as follows:
 - a. *SUM_StructLoss* total damage to structural components of buildings in each census tract (\$1,000)
 - b. *SUM_NonStrLosses* total damage to non-structural components of buildings (\$1,000)
 - c. *SUM_BldgLosses* total building damage, i.e., the sum of structural and non-structural damage (\$1,000)
 - d. *SUM_ContentLoss* total loss associated with damage to building contents (\$1,000)
 - e. *SUM_InvLoss* total loss associated with damage to commercial inventories (\$1,000)
 - f. *SUM_RelocLoss* total cost associated with relocation of building occupants during building repair (\$1,000)
 - g. *SUM_IncLoss* total income loss associated with building damage-related business disruption (\$1,000)

h. *SUM_RentLoss* - total value of lost rent associated with relocation of building Federal Emergency Management Agency occupants during building repair (\$1,000)

- i. *SUM_WageLoss* total wage loss associated with building damage-related business disruption (\$1,000)
- j. *SUM_OutputLoss* total economic output loss associated with building damage-related business disruption (\$1,000) [*Note: this category of loss is estimated as input to the Hazus Indirect Economic Loss Module (IELM) but is not included in Hazus' reported Total Direct Economic Losses.*]
- k. *SUM_TotalLoss* The sum of all building damage-related direct economic losses, i.e., structural, non-structural, contents, commercial inventories, relocation, income, rent and wage losses (\$1,000).

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window (Figure 5.10), select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Dot density". In the Field Selection pick list, double-click on the field SUM_TotalLoss to include it in the thematic map. Double-click on the "Symbol" to the right of the field name to open the Symbol Selector; symbolize using red dots. The dot size and dot value will vary from scenario to scenario. Click "OK" to accept your settings and draw the map. Note that direct economic loss is measured in thousands of dollars so a dot value of 1,000 is equal to \$1,000,000.

Layer Properties	×
General Source Selection	n Display Symbology Fields Definition Query Labels Joins & Relates Time HTML Popup
Show: Features Categories Ouantities Graduated colors Graduated symbols Proportional symbols Dot density Charts Multiple Attributes	Draw quantities using dots to show values. Import Field Selection SUM_NonStrLoss SUM_BigLoss > SUM_ContentLoss > SUM_RelocLoss SUM_RentLoss SUM_WageLoss III
	Densities Calculated at 1:723877 Dot Size 2 Dot Value 10000 Max Background Properties C Maintain Density By Dot Value
	OK Cancel Apply

Figure 5.10: Layer Properties Window for the Economic_Losses_by_Tract Feature Class

5.2.4 Public Shelter Needs and Displaced Households

* This layer will be created using the file geodatabase feature class named "Census_Tract_Shelter_Needs_and_Debris" which is part of the "General_Building_Stock" file geodatabase feature dataset created by the *Hazus Export Tool*.

- Add the "General_Building_Stock" feature dataset to your ArcGIS workspace (if it is not already loaded) to access the "Census_Tract_Shelter_Needs_and_Debris" feature class. This census tract layer includes various hazard data as well as debris and shelter estimates resulting from damage to buildings, as follows:
 - a. *dbo.eqTract.DebrisW* total estimated weight of light debris (i.e., wood and brick) in each census tract (in thousands of tons)
 - b. dbo.eqTract.DebrisM this field is not used by Hazus, so contains "<Null"> records
 - c. *dbo.eqTract.DebrisS* total estimated weight of heavy debris (i.e., steel and concrete) in each census tract (in thousands of tons)
 - d. dbo.eqTract.DebrisC this field is not used by Hazus, so contains "<Null"> records
 - e. *dbo.eqTract.DebrisTotal* total estimated weight of light and heavy debris (in thousands of tons)
 - f. *dbo.eqTract.DisplacedHouseholds* total estimated number of displaced households in each census tract
 - g. *dbo.eqTract.ShortTermShelter* total number of people expected to require publicly-provided short-term shelter

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window (Figure 5.11), select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Dot density". In the Field Selection pick list, double-click on the fields *dbo.eqTract.DisplacedHouseholds and dbo.eqTract.ShortTermShelter* to include them in the thematic map. Double-click on the "Symbol" to the right of the field name to open the Symbol Selector; symbolize *DisplacedHouseholds* using orange dots, and *ShortTermShelter* using green dots. The dot size and dot value will vary from scenario to scenario. Click "OK" to accept your settings and draw the map.

Figure 5.11: Layer Properties Window for the *Census_Tract_Shelter_Needs_and_Debris* Feature Class

Layer Properties	X
General Source Selection	Display Symbology Fields Definition Query Labels Joins & Relates Time HTML Popup
Show:	Draw quantities using dots to show values.
Features Categories	Field Selection
Quantities	
Graduated colors	dbo.eqTractSufFlRu Sym Field
- Graduated symbols	dbo.eqTractDebrisW > • dbo.eqTractDisplacedHouseholds
- Proportional symbols	dbo.eqTractDebrisM • dbo.eqTractShortTermShelter
Dot density Charts	dbo.eqTractDebrisS = <
Multiple Attributes	dbo.eqTractDebrisT(
manupic / taibateo	
	4 111 >
	Densities Calculated at 1:723877
** * * * **	Dot Min Mean Max Size Properties
Sec. Sec.	Exclusion
· · · · · · · · · · · · · · · · · · ·	2 Maintain Density By
	Dot Value 10 Dot Value -
	OK Cancel Apply

5.2.5 Estimated Total Debris

* This layer will be created using the file geodatabase feature class named "Census_Tract_Shelter_Needs_and_Debris" which is part of the "General_Building_Stock" file geodatabase feature dataset created by the *Hazus Export Tool*.

- 1. Add the "General_Building_Stock" feature dataset to your ArcGIS workspace (if it is not already loaded) to access the "*Census_Tract_Shelter_Needs_and_Debris*" feature class. As noted in Section 5.2.4, this census tract layer includes various hazard data as well as debris and shelter estimates resulting from damage to buildings.
 - a. *dbo.eqTract.DebrisW* total estimated weight of light debris (i.e., wood and brick) in each census tract (in thousands of tons)
 - b. dbo.eqTract.DebrisM this field is not used by Hazus, so contains "<Null"> records
 - c. *dbo.eqTract.DebrisS* total estimated weight of heavy debris (i.e., steel and concrete) in each census tract (in thousands of tons)
 - d. dbo.eqTract.DebrisC this field is not used by Hazus, so contains "<Null"> records
 - e. *dbo.eqTract.DebrisTotal* total estimated weight of light and heavy debris (in thousands of tons)
 - f. *dbo.eqTract.DisplacedHouseholds* total estimated number of displaced households in each census tract
 - g. *dbo.eqTract.ShortTermShelter* total number of people expected to require

publicly-provided short-term shelter

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

- 2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window (Figure 5.12), select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Dot density". In the Field Selection pick list, double-click on the field *dbo.eqTract.DebrisTotal* to include it in the thematic map. Double-click on the "Symbol" to the right of the field name to open the Symbol Selector; symbolize *dbo.eqTract.DebrisT* using red dots. The dot size and dot value will vary from scenario to scenario. Click "OK" to accept your settings and draw the map. Note that debris is measured in thousands of tons, so a dot value of 1.0 equals 1,000 tons.
- 3. It may also be helpful to include an estimate of the equivalent number of trucks required to haul the identified total debris amounts, for example, by County as shown for the Wasatch Fault Scenario in **Table 5.3**. Hazus uses a conversion formula of 25 tons per truckload. The "Debris Generation" section of the *Hazus Global Summary Report* (page 14 of 22) includes the total results of this conversion, while county level debris totals (in thousands of tons) are available from the *Debris Generated Report*.

County	Brick and Wood (Tons)	Concrete and Steel (Tons)	Total Debris (Tons)	Total Estimated Truckloads
Davis	526,000	784,000	1,310,000	52,400
Salt Lake	11,300,000	16,544,000	27,844,000	1,113,760
Summit	1,000	1,000	2,000	80
Tooele	11,000	4,000	15,000	600
Utah	122,000	241,000	363,000	14,520
Weber	119,000	47,000	166,000	6,640
Total	12,079,000	17,621,000	29,700,000	1,188,000

Table 5.3 Estimated Debris Amounts in Tons and Truckloads, for the M7.0 Wasatch Fault Scenario Example

Figure 5.12: Layer Properties Window for the Census_Tract_Shelter_Needs_and_Debris Feature Class

General Source Selection	Display Symbology Fields Definition Query Labels Joins & Relates Time HTML Popup
Features	Draw quantities using dots to show values. Import
Categories	Field Selection
Quantities	
Graduated colors	dbo bzTractl ength
Graduated symbols	dbo.hzTract.NumAggr
- Proportional symbols	dbo.hzTractCenLat
Dot density	dbo.hzTractCenLong <
Charts	dbo.eqTracteqTractly
Multiple Attributes	dbo.eqTractLqfSusC: dbo.eqTractLndSusC ~ <<
	Densities Calculated at 1:723877
14 P. 7 7 88 J	Dot Min Mean Max Size Properties
1. 1. N	Exclusion
	2 PL Maintain Density By
	Dot Value 1

5.2.6 Highway Segment Impact

* This layer will be created using the file geodatabase feature class named "Highway_Segments" which is part of the "Transportation" file geodatabase feature dataset created by the *Hazus Export Tool*.

- 1. Add the "Transportation" feature dataset to your ArcGIS workspace to access the "*Highway_Segments*" feature class. This layer provides the highway segment inventory data as well as damage and functionality estimates, as follows:
 - a. *dbo.eqHighwaySegment.PDsNone* the probability that each highway segment is in the "None" damage state (values range from 0.0 to 1.0)
 - b. *dbo.eqHighwaySegment.PDsSlight* the probability that each highway segment is in the "Slight" damage state (values range from 0.0 to 1.0)
 - c. *dbo.eqHighwaySegment.PDsModerate* the probability that each highway segment is in the "Moderate" damage state (values range from 0.0 to 1.0)
 - d. *dbo.eqHighwaySegment.PDsExtensive* the probability that each highway segment is in the "Extensive" damage state (values range from 0.0 to 1.0)
 - e. *dbo.eqHighwaySegment.PDsComplete* the probability that each highway segment is in the "Complete" damage state (values range from 0.0 to 1.0)
 - f. *dbo.eqHighwaySegment.PDsExceedSlight* the probability that each highway segment has experienced "Slight" or greater damage (values range from 0.0 to

1.0)

- g. *dbo.eqHighwaySegment.PDsExceedModerate* the probability that each highway segment has experienced "Moderate" or greater damage (values range from 0.0 to 1.0)
- h. *dbo.eqHighwaySegment.PDsExceedExtensive* the probability that each highway segment has experienced "Extensive" or greater damage (values range from 0.0 to 1.0)
- i. *dbo.eqHighwaySegment.FunctDay1* highway segment functionality on Day 1 (values range from 0 100%)
- j. *dbo.eqHighwaySegment.FunctDay3* highway segment functionality on Day 3 (values range from 0 100%)
- k. *dbo.eqHighwaySegment.FunctDay7* highway segment functionality on Day 7 (values range from 0 100%)
- I. dbo.eqHighwaySegment.FunctDay14 highway segment functionality on Day 14 (values range from 0 – 100%)
- m. *dbo.eqHighwaySegment.FunctDay30* highway segment functionality on Day 30 (values range from 0 100%)
- n. *dbo.eqHighwaySegment.FunctDay90* highway segment functionality on Day 90 (values range from 0 100%)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

 To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated Colors". In the Fields Value dropdown menu, select

dbo.eqHighwaySegment.PDsExceedModerate. Under "Classification" on the righthand side, click "Classify..." to bring up the Classification window (**Figure 5.13**). From the "Classification – Classes" pulldown menu, pick 3 classes, then from the "Classification - Method:" pulldown menu, select "Manual". Edit the Break Values on the right to: 0.25, 0.75, and 1.0. Click "OK" to return to the Layer Properties window (**Figure 5.14**). Double-click on the "Symbol" to the right of each value range to access the Symbol Selector; symbolize 0 - 0.25 using a green line, 0.25 - 0.75 using a yellow line and 0.75 - 1.0 using a red line. Click "OK" to accept your settings and draw the map. Note that highway segments will only be damaged if ground failure has occurred, and in many cases this damage will be modest (as shown in **Figure 5.13**); for scenarios that do not include liquefaction or landslide hazard data (i.e., "shaking only"), these elements will not be damaged.

Figure 5.13: Classification Window for the Highway_Segments Feature Class

Classification	Classification Statisti	
Method: Manual	Count:	937
Heriou.	Minimum:	0.000
Classes: 3 👻	Minimum: Maximum:	0.2499
Data Exclusion	Sum:	36.74
	Mean:	0.03921
Exclusion Sampling	Median:	0.000
	Standard Deviation:	0.08234
olumns: 100 🛬 📄 Show Std. Dev. 📄 Show		0.00234
		Break Values
800-	8	
T	0.2500	0.2500
	o j	0.7500
		1.000
600-		
400-		
200-		
		< III I
0		
0.000 0.06248 0.1250	0.1874 0.2499	ОК
0.1200	0.2.100	

Figure 5.14: Layer Properties Window for the Highway_Segments Feature Class

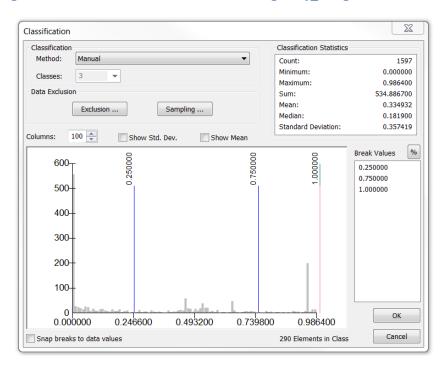
General Source Selectio	n Display Symbolog	y Fields Definition Que	ny Lab	els Joins & Relate	s Time HTML Popu	0
how:	II Display Gymbolog	y Tields Delinition Que	iy Lau		s Time TTTMLFopu	P
Features	Draw quantities us	Draw quantities using color to show values. Import				
Categories	Fields			Classification		
Quantities Graduated colors	Value: PDs	ExceedModerate	•	Mar	nual	
Graduated symbols Proportional symbols	Normalization: none	9	•	Classes: 3 💌	Classify	
Charts Multiple Attributes	Color Ramp:		•			
	Sym Range		Lab	el		
	0.0000 - 0.250	0	0.00	00 - 0.2500		
	0.2501 - 0.750	0	0.250	01 - 0.7500		
	0.7501 - 1.000	0	0.750	01 - 1.0000		
	Show class ranges	using feature values			Advance <u>d</u> •	

5.2.7 Major Roadway Bridge Impact

* This layer will be created using the file geodatabase feature class named

"Highway_Bridges" which is part of the "Transportation" file geodatabase feature dataset created by the *Hazus Export Tool*.

Federal Emergency Management Agency


- 1. Add the "*Transportation*" feature dataset to your ArcGIS workspace (if it is not already loaded) to access the "*Highway_Bridges*" feature class. This layer provides the highway bridge inventory data as well as damage and functionality estimates, as follows:
 - a. *dbo.eqHighwayBridge.PDsNone* the probability that each highway bridge is in the "None" damage state (values range from 0.0 to 1.0)
 - b. *dbo.eqHighwayBridge.PDsSlight* the probability that each highway bridge is in the "Slight" damage state (values range from 0.0 to 1.0)
 - c. *dbo.eqHighwayBridge.PDsModerate* the probability that each highway bridge is in the "Moderate" damage state (values range from 0.0 to 1.0)
 - d. *dbo.eqHighwayBridge.PDsExtensive* the probability that each highway bridge is in the "Extensive" damage state (values range from 0.0 to 1.0)
 - e. *dbo.eqHighwayBridge.PDsComplete* the probability that each highway bridge is in the "Complete" damage state (values range from 0.0 to 1.0)
 - f. *dbo.eqHighwayBridge.PDsExceedSlight* the probability that each highway bridge has experienced "Slight" or greater damage (values range from 0.0 to 1.0)
 - g. *dbo.eqHighwayBridge.PDsExceedModerate* the probability that each highway bridge has experienced "Moderate" or greater damage (values range from 0.0 to 1.0)
 - h. *dbo.eqHighwayBridge.PDsExceedExtensive* the probability that each highway bridge has experienced "Extensive" or greater damage (values range from 0.0 to 1.0)
 - i. *dbo.eqHighwayBridge.FunctDay1* highway bridge functionality on Day 1 (values range from 0 100%)
 - j. *dbo.eqHighwayBridge.FunctDay3* highway bridge functionality on Day 3 (values range from 0 100%)
 - k. *dbo.eqHighwayBridge.FunctDay7* highway bridge functionality on Day 7 (values range from 0 – 100%)
 - *dbo.eqHighwayBridge.FunctDay14* highway bridge functionality on Day 14 (values range from 0 – 100%)
 - m. *dbo.eqHighwayBridge.FunctDay30* highway bridge functionality on Day 30 (values range from 0 100%)
 - n. *dbo.eqHighwayBridge.FunctDay90* highway bridge functionality on Day 90 (values range from 0 100%)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated Colors". In the Fields Value dropdown menu, select *dbo.eqHighwayBridge.PDsExceedModerate*. Under "Classification" on the right-hand side, click "Classify..." to bring up the Classification window (Figure 5.15). From the "Classification – Classes" pulldown menu, pick 3 classes, then from the "Classification - Method:" pulldown menu, select "Manual". Edit the Break Values on the right to: 0.25, 0.75, and 1.0. Click "OK" to

return to the Layer Properties window (**Figure 5.16**). Double-click on the "Symbol" to the right of each value range to access the Symbol Selector, and symbolize 0 - 0.25 using green dots, 0.25 - 0.75 using yellow dots and 0.75 - 1.0 using red dots. Click "OK" to accept your settings and draw the map.

3. It may also be helpful to include an estimate of the required number of bridge inspectors, as shown for the Wasatch Fault Scenario in **Table 5.4**. While the actual rate of inspection will vary based on a number of conditions, including access to damaged areas, complexity of the damage distribution and inspector availability, approximate "rules of thumb" were developed with input from experienced inspectors to support FEMA's Wasatch Fault Scenario, as follows. The estimated number of bridge inspectors is estimated for priority inspections only (i.e., for bridges with at least moderate damage), assuming that two engineers can inspect five bridges a day, for three days; the total number of required inspectors is calculated as the number of priority bridges divided by 7.5. These estimates do not account for potential re-inspections required as a result of significant aftershocks.

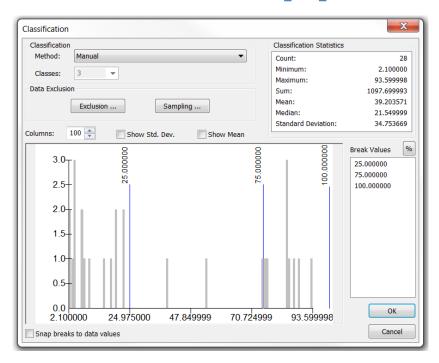
Figure 5.15: Classification Window for the Highway_Bridges Feature Class

Figure 5.16: Layer Properties Window for the Highway_Bridges Feature Class

General Source Selection	Display Sym	pology Fields Defi	nition Query La	bels Joins & Relate	s Time HTMLPo	pup
how:	Draw quantiti	es using color to sl			Import	
Features	-	Fields				
Categories Quantities				Classification		
Graduated colors	Value:	dbo.eqHighwayBrid	ge.PDsE> 🔻	Mar		
Graduated symbols	Normalization:	none	•	Classes: 3 💌	Classify	
Charts Aultiple Attributes	Color Ramp:		-			
	Sym Range		Lat	bel		
	• 0.00000	0 - 0.250000	0.00	0000 - 0.250000		
	0.25000	1 - 0.750000	0.25	50001 - 0.750000		
	• 0.75000	1 - 1.000000	0.75	50001 - 1.000000		
	Show class ra	nges using feature va	lues		Advance <u>d</u> •	

Table 5.4 Estimated Number of Bridge Inspectors Required for a M7.0 Wasatch Fault Scenario

County	Total # of Bridges	# of Bridges Needing Inspection (Bridges with at least Moderate Damage)	# of Bridge Inspectors Needed
Salt Lake	608	365	49
Juab	80	0	0
Weber	141	10	1
Tooele	54	2	1
Cache	62	0	0
Rich	23	0	0
Morgan	80	0	0
Summit	156	0	0
Wasatch	24	0	0
Box Elder	230	0	0
Utah	314	53	7
Davis	130	27	4
Total	1,902	458	62


5.2.8 Hospital Functionality (Day 1)

* This layer will be created using the file geodatabase feature class named "Medical_Care_Facilities", which is part of the "Essential_Facilities" file geodatabase feature dataset created by the *Hazus Export Tool*.

- 1. Add the "Essential_Facilities" feature dataset to your ArcGIS workspace to access the "Medical_Care_Facilities" feature class. This layer provides the medical care facilities/hospital inventory data as well as damage and functionality estimates, as follows:
 - a. *dbo.eqCareFlty.PDsNone* the probability that each hospital is in the "None" damage state (values range from 0.0 to 1.0)
 - b. *dbo.eqCareFlty.PDsSlight* the probability that each hospital is in the "Slight" damage state (values range from 0.0 to 1.0)
 - c. *dbo.eqCareFlty.PDsModerate* the probability that each hospital is in the "Moderate" damage state (values range from 0.0 to 1.0)
 - d. *dbo.eqCareFlty.PDsExtensive* the probability that each hospital is in the "Extensive" damage state (values range from 0.0 to 1.0)
 - e. *dbo.eqCareFlty.PDsComplete* the probability that each hospital is in the "Complete" damage state (values range from 0.0 to 1.0)
 - f. *dbo.eqCareFlty.PDsExceedSlight* the probability that each hospital has experienced "Slight" or greater damage (values range from 0.0 to 1.0)
 - g. *dbo.eqCareFlty.PDsExceedModerate* the probability that each hospital has experienced "Moderate" or greater damage (values range from 0.0 to 1.0)
 - h. *dbo.eqCareFlty.PDsExceedExtensive* the probability that each hospital has experienced "Extensive" or greater damage (values range from 0.0 to 1.0)
 - i. *dbo.eqCareFlty.FunctDay1* hospital functionality on Day 1 (values range from 0 100%)
 - j. *dbo.eqCareFlty.FunctDay3* hospital functionality on Day 3 (values range from 0 100%)
 - k. *dbo.eqCareFlty.FunctDay7* hospital functionality on Day 7 (values range from 0 100%)
 - *dbo.eqCareFlty.FunctDay14* hospital functionality on Day 14 (values range from 0 100%)
 - m. *dbo.eqCareFlty.FunctDay30* hospital functionality on Day 30 (values range from 0 100%)
 - n. *dbo.eqCareFlty.FunctDay90* hospital functionality on Day 90 (values range from 0 100%)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

 To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated Colors". In the Fields Value dropdown menu, select *dbo.eqCareFlty.FunctDay1*. Under "Classification" on the right-hand side, click "Classify..." to bring up the Classification window (Figure 5.17). From the "Classification – Classes" pulldown menu, pick 3 classes, then from the "Classification - Method:" pulldown menu, select "Manual". Edit the Break Values on the right to: 25, 75, and 100. Click "OK" to return to the Layer Properties window (**Figure 5.18**). Double-click on the "Symbol" to the right of each value range to access the Symbol Selector; symbolize 0-25 using red hospital symbols (i.e., the ESRI symbol named "Hospital 2"), 25 - 75 using yellow hospital symbols and 75 - 100 using green hospital symbols. Click "OK" to accept your settings and draw the map. A similar approach may be implemented for mapping of other essential facilities included in the "Essential_Facilities" file geodatabase feature dataset created by the *Hazus Export Tool*; Emergency Operations Centers (EOCs), Fire Stations, Police Stations and Schools.

Figure 5.17: Classification Window for the Medical_Care_Facilities Feature Class

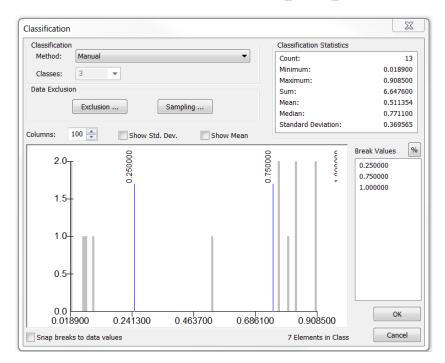
Figure 5.18: Layer Properties Window for the Medical_Care_Facilities Feature Class

ayer Properties			×			
General Source Selectio	n Display Symt	bology Fields Definition Query	Labels Joins & Relates Time HTML Popup			
Features	Draw quantities using color to show values. Import					
Categories	Fields	-Fields				
Quantities Graduated colors	Value:	dbo.eqCareFlty.FunctDay1	Manual			
Graduated symbols Proportional symbols	Normalization:	none 🔻	Classes: 3 Classify			
Charts Multiple Attributes	Color Ramp:	•]			
	Symbol	Range	Label			
		2.100000 - 25.000000	2.100000 - 25.000000			
		25.000001 - 75.000000	25.000001 - 75.000000			
1.2 M		75.000001 - 100.000000	75.000001 - 100.000000			
	∢	III	4			
Show class ra		nges using feature values	Advance <u>d</u> -			
			OK Cancel Apply			

5.2.9 Electrical Power Facility Impact

*This layer will be created using the file geodatabase feature class named "Electrical_Power_Facilities", which is part of the "Utilities" file geodatabase feature dataset as exported by the *Hazus Export Tool*.

- Add the "Utilities" feature dataset to your ArcGIS workspace to access the "Electrical_Power_Facilities" feature class. This layer provides the power facilities inventory data as well as damage and functionality estimates, as follows:
 - a. *dbo.eqElectricPowerFlty.PDsNone* the probability that each electric power facility is in the "None" damage state (values range from 0.0 to 1.0)
 - b. *dbo.eqElectricPowerFlty.PDsSlight* the probability that each electric power facility is in the "Slight" damage state (values range from 0.0 to 1.0)
 - c. *dbo.eqElectricPowerFlty.PDsModerate* the probability that each electric power facility is in the "Moderate" damage state (values range from 0.0 to 1.0)
 - d. *dbo.eqElectricPowerFlty.PDsExtensive* the probability that each electric power facility is in the "Extensive" damage state (values range from 0.0 to 1.0)
 - e. *dbo.eqElectricPowerFlty.PDsComplete* the probability that each electric power facility is in the "Complete" damage state (values range from 0.0 to 1.0)
 - f. *dbo.eqElectricPowerFlty.PDsExceedSlight* the probability that each electric power facility has experienced "Slight" or greater damage (values range from 0.0 to 1.0)


- g. *dbo.eqElectricPowerFlty.PDsExceedModerate* the probability that each electric power facility has experienced "Moderate" or greater damage (values range from 0.0 to 1.0)
- h. *dbo.eqElectricPowerFlty.PDsExceedExtensive* the probability that each electric power facility has experienced "Extensive" or greater damage (values range from 0.0 to 1.0)
- i. *dbo.eqElectricPowerFlty.FunctDay1* electric power facility functionality on Day 1 (values range from 0 100%)
- j. *dbo.eqElectricPowerFlty.FunctDay3* electric power facility functionality on Day 3 (values range from 0 100%)
- k. *dbo.eqElectricPowerFlty.FunctDay7* electric power facility functionality on Day 7 (values range from 0 – 100%)
- I. dbo.eqElectricPowerFlty.FunctDay14 electric power facility functionality on Day 14 (values range from 0 – 100%)
- m. *dbo.eqElectricPowerFlty.FunctDay30* electric power facility functionality on Day 30 (values range from 0 – 100%)
- n. *dbo.eqElectricPowerFlty.FunctDay90* electric power facility functionality on Day 90 (values range from 0 100%)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated Colors". In the Fields Value dropdown menu, select

dbo.eqElectricPowerFlty.PDsExceedModerate. Under "Classification" on the righthand side, click "Classify..." to bring up the Classification window (**Figure 5.19**). From the "Classification – Classes" pulldown menu, pick 3 classes, then from the "Classification - Method:" pulldown menu, select "Manual". Edit the Break Values on the right to: 0.25, 0.75, and 1.0. Click "OK" to return to the Layer Properties window (**Figure 5.20**). Double-click on the "Symbol" to the right of each value range to access the Symbol Selector; symbolize 0 - 0.25 using a green circle with an "X" through it (i.e., the ESRI symbol named "Circle 13", Font: ESRI Default Marker, Subset: Basic Latin), 0.25 - 0.75 using yellow symbols and 0.75 - 1.0 using red symbols. Click "OK" to accept your settings and draw the map. A similar approach may be implemented for mapping of other utility facilities included in the "Utilities" file geodatabase feature dataset created by the *Hazus Export Tool*; communications facilities, oil facilities (see Section 5.2.10) natural gas facilities (see Section 5.2.11), potable water facilities (see Section 5.2.12), and wastewater facilities.

Figure 5.19: Classification Window for the Electrical_Power_Facilities Feature Class

Figure 5.20: Layer Properties Window for the Electrical_Power_Facilities Feature Class

how: Features Categories	Draw qua										
Quantities Graduated colors	Fields Value:	dbo.ed	-	r to show values . PowerFlty.PDs ▼		Classification	Manual	_	mport		
Multiple Attributes	Normalizat Color Ramp):		The second se			•		ssily	1	
	0.00.2	inge 18900 - 0.250 50001 - 0.750 50001 - 1.000	000	0.0	5000	00 - 0.250000 01 - 0.750000 01 - 1.000000					
	Show cla	ss ranges us	ing featu	ure values				Adva	ance <u>d</u> •		

5.2.10 Oil Facility Impact

*This feature class will be created using the file geodatabase feature class named "Oil_Facilities", which is part of the "Utilities" file geodatabase feature dataset as exported by the *Hazus Export Tool*.

- 1. Add the layer "*Utilities*" feature dataset to your ArcGIS workspace (if it is not already loaded) to access the "*Oil_Facilities*" feature class. This layer provides the oil facilities inventory data as well as damage and functionality estimates, as follows:
 - a. *dbo.eqOilFlty.PDsNone* the probability that each oil facility is in the "None" damage state (values range from 0.0 to 1.0)
 - b. *dbo.eqOilFlty.PDsSlight* the probability that each oil facility is in the "Slight" damage state (values range from 0.0 to 1.0)
 - c. *dbo.eqOilFlty.PDsModerate* the probability that each oil facility is in the "Moderate" damage state (values range from 0.0 to 1.0)
 - d. *dbo.eqOilFlty.PDsExtensive* the probability that each oil facility is in the "Extensive" damage state (values range from 0.0 to 1.0)
 - e. *dbo.eqOilFlty.PDsComplete* the probability that each oil facility is in the "Complete" damage state (values range from 0.0 to 1.0)
 - f. *dbo.eqOilFlty.PDsExceedSlight* the probability that each oil facility has experienced "Slight" or greater damage (values range from 0.0 to 1.0)
 - g. *dbo.eqOilFlty.PDsExceedModerate* the probability that each oil facility has experienced "Moderate" or greater damage (values range from 0.0 to 1.0)
 - h. *dbo.eqOilFlty.PDsExceedExtensive* the probability that each oil facility has experienced "Extensive" or greater damage (values range from 0.0 to 1.0)
 - i. *dbo.eqOilFlty.FunctDay1* oil facility functionality on Day 1 (values range from 0 100%)
 - j. *dbo.eqOilFlty.FunctDay3* oil facility functionality on Day 3 (values range from 0 100%)
 - k. *dbo.eqOilFlty.FunctDay7* oil facility functionality on Day 7 (values range from 0 100%)
 - I. *dbo.eqOilFlty.FunctDay14* oil facility functionality on Day 14 (values range from 0 100%)
 - m. *dbo.eqOilFlty.FunctDay30* oil facility functionality on Day 30 (values range from 0 100%)
 - n. *dbo.eqOilFlty.FunctDay90* oil facility functionality on Day 90 (values range from 0 100%)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated Colors". In the Fields Value dropdown menu, select *dbo.eqOilFlty.PDsExceedModerate*. Under "Classification" on the right-hand side, click "Classify..." to bring up the Classification window (Figure 5.21). From the "Classification – Classes" pulldown menu, pick 3 classes, then from the "Classification - Method:" pulldown menu, select "Manual".

Edit the Break Values on the right to: 0.25, 0.75, and 1.0. Click "OK" to return to the Layer Properties window (**Figure 5.22**). Double-click on the "Symbol" to the right of each value range to access the Symbol Selector; symbolize 0 - 0.25 using a green Petroleum Facilities symbol (e.g., use the ERS Homeland Security symbol named "L4 Petroleum Facilities", which can be found by typing "Petroleum Facilities" into the search box at the top of the Symbol Selector window as shown in **Figure 5.23**), 0.25 - 0.75 using yellow symbols and 0.75 - 1.0 using red symbols. Click "OK" to accept your settings and draw the map.

Figure 5.21: Classification Window for the Oil_Facilities Feature Class

General Source Selection	n Display Symbo	ology Fields Definition Quer	y Lab	oels Joins & Relates	Time HTML Popup	0
how:	Draw quantitie	s using color to show valu	25		Import	
Features Categories	Fields	o doing oolor to ollow raid		Classification	port	
Quantities				Manua	J	
Graduated colors	value:	dbo.eqOilFlty.PDsExceedMo	<u> </u>			
Graduated symbols	Normalization:	none	•	Classes: 3 🔻	Classify	
Charts Multiple Attributes	Color Ramp:		•			
	Sym Range		Lab	el		
	0.001500	- 0.250000	0.00	1500 - 0.250000		
	0.250001	- 0.750000	0.25	0001 - 0.750000		
	0.750001	- 1.000000	0.75	0001 - 1.000000		
	Show class ran	ges using feature values		(Advance <u>d</u> •	

Figure 5.22: Layer Properties Window for the Oil_Facilities Feature Class

Figure 5.23: Symbol Selector Window for the Oil_Facilities Feature Class

Symbol Selector	×
Petroleum Facilities	Current Symbol
Search: All Styles Referenced Styles	
ERS Homeland Security	<u>4</u>
S S S S	
L1 Petroleum L2 Petroleum L3 Petroleum L4 Petroleum Facilities Facilities Facilities Facilities	Color: Size: 24.00 Angle: 0.00
	Edit Symbol Save As Reset
	Style References OK Cancel

5.2.11 Natural Gas Facility Impact

*This layer will be created using the file geodatabase feature class named "Natural_Gas_Facilities", which is part of the "Utilities" file geodatabase feature dataset as exported by the *Hazus Export Tool*.

- 1. Add the "Utilities" feature dataset to your ArcGIS workspace (if it is not already loaded) to access the "Natural_Gas_Facilities" feature class. This layer provides the natural gas facilities inventory data as well as damage and functionality estimates, as follows:
 - a. *dbo.eqNaturalGasFlty.PDsNone* the probability that each natural gas facility is in the "None" damage state (values range from 0.0 to 1.0)
 - b. *dbo.eqNaturalGasFlty.PDsSlight* the probability that each natural gas facility is in the "Slight" damage state (values range from 0.0 to 1.0)
 - c. *dbo.eqNaturalGasFlty.PDsModerate* the probability that each natural gas facility is in the "Moderate" damage state (values range from 0.0 to 1.0)
 - d. *dbo.eqNaturalGasFlty.PDsExtensive* the probability that each natural gas facility is in the "Extensive" damage state (values range from 0.0 to 1.0)
 - e. *dbo.eqNaturalGasFlty.PDsComplete* the probability that each natural gas facility is in the "Complete" damage state (values range from 0.0 to 1.0)
 - f. *dbo.eqNaturalGasFlty.PDsExceedSlight* the probability that each natural gas facility has experienced "Slight" or greater damage (values range from 0.0 to 1.0)
 - g. *dbo.eqNaturalGasFlty.PDsExceedModerate* the probability that each natural gas facility has experienced "Moderate" or greater damage (values range from 0.0 to 1.0)
 - h. *dbo.eqNaturalGasFlty.PDsExceedExtensive* the probability that each natural gas facility has experienced "Extensive" or greater damage (values range from 0.0 to 1.0)
 - i. *dbo.eqNaturalGasFlty.FunctDay1* natural gas facility functionality on Day 1 (values range from 0 100%)
 - j. *dbo.eqNaturalGasFlty.FunctDay3* natural gas facility functionality on Day 3 (values range from 0 100%)
 - k. *dbo.eqNaturalGasFlty.FunctDay7* natural gas facility functionality on Day 7 (values range from 0 – 100%)
 - I. *dbo.eqNaturalGasFlty.FunctDay14* natural gas facility functionality on Day 14 (values range from 0 100%)
 - m. *dbo.eqNaturalGasFlty.FunctDay30* natural gas facility functionality on Day 30 (values range from 0 100%)
 - n. *dbo.eqNaturalGasFlty.FunctDay90* natural gas facility functionality on Day 90 (values range from 0 100%)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

 To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated Colors". In the Fields Value dropdown menu, select *dbo.eqNaturalGasFlty.PDsExceedModerate*. Under "Classification" on the right-hand side, click "Classify..." to bring up the Classification window (**Figure 5.24**). From the "Classification – Classes" pulldown menu, pick 3 classes, then from the "Classification – Method:" pulldown menu, select "Manual". Edit the Break Values on the right to: 0.25, 0.75, and 1.0. Click "OK" to return to the Layer Properties window (**Figure 5.25**). Double-click on the "Symbol" to the right of each value range to access the Symbol Selector; symbolize 0 - 0.25 using a green Natural Gas Facilities symbol (e.g., use the ERS Homeland Security symbol named "L4 Natural Gas Facilities" which can be found by typing "Natural Gas Facilities" into the search box at the top of the Symbol Selector window as shown in **Figure 5.26**). Symbolize 0 - 0.25 using a green symbol, 0.25 - 0.75 using yellow symbols and 0.75 - 1.0 using red symbols. Click "OK" to accept your settings and draw the map.

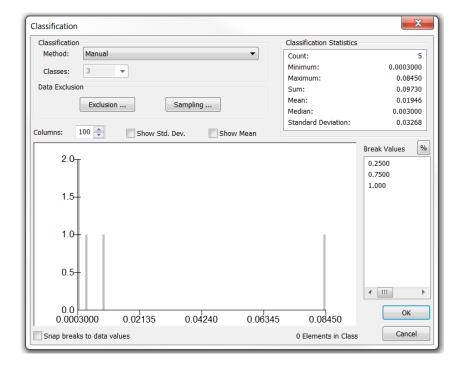


Figure 5.24: Classification Window for the Natural_Gas_Facilities Feature Class

Figure 5.25: Layer Properties Window for the Natural_Gas_Facilities Feature Class

General Source Selection	on Display Syml	oology Fields Defin	nition Query Lal	bels Joins & Relate	es Time HTML Po	pup
how:	Draw quantiti	es using color to st	now values		Import	
Features	Fields	co using color to si	ion values.	Classification	import	
Categories Quantities Graduated colors	Value:	dbo.eqNaturalGasF	ty.PDsEx 🔻		nual	
Graduated symbols	Normalization:	none	•	Classes: 3	Classify	
Charts Multiple Attributes	Color Ramp:		•			
	Sym Range		Lab	pel		
	0.00070	0 - 0.250000	0.00	00700 - 0.250000		
	0.25000	1 - 0.750000	0.25	60001 - 0.750000		
	0.75000	1 - 1.000000	0.75	50001 - 1.000000		
ARCAL	Show class ra	nges using feature va	lues		Advance <u>d</u> •	
				ОК	Cancel	Apply

Figure 5.26: Symbol Selector Window for the Natural_Gas_Facilities Feature Class

Symbol Selector	X
Natural Gas Facilities 🗸 🔍 🛞 🚊 🕶	Current Symbol
Search: All Styles Referenced Styles	
ERS Homeland Security	
L1 Natural L2 Natural L3 Natural L4 Natural Gas Facilities Gas Facilities Gas Facilities Military Emergency Management	Color:
	Size: 24.00
Natural Gas Natural Gas Natural Gas Facility F Facility H Facility N Facility U	Angle: 0.00
	Edit Symbol Save As Reset
	Style References
	OK Cancel

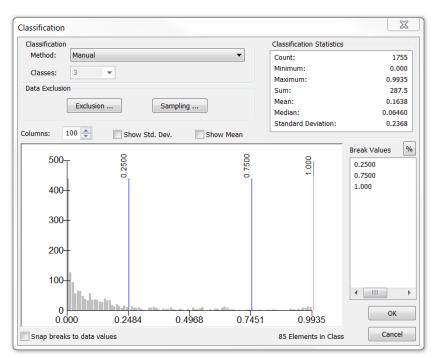
5.2.12 Potable Water Facility Impact

*This layer will be created using the file geodatabase feature class named "Potable Water Facilities", which is part of the "Utilities" file geodatabase feature dataset as exported by the *Hazus Export Tool*.

- Add the "Utilities" feature dataset to your ArcGIS workspace (if it is not already loaded) to access the "Potable_Water_Facilities" feature class. This layer provides the potable water facilities inventory data as well as damage and functionality estimates, as follows:
 - a. *dbo.eqPotableWaterFlty.PDsNone* the probability that each potable water facility is in the "None" damage state (values range from 0.0 to 1.0)
 - b. *dbo.eqPotableWaterFlty.PDsSlight* the probability that each potable water facility is in the "Slight" damage state (values range from 0.0 to 1.0)
 - c. *dbo.eqPotableWaterFlty.PDsModerate* the probability that each potable water facility is in the "Moderate" damage state (values range from 0.0 to 1.0)
 - d. *dbo.eqPotableWaterFlty.PDsExtensive* the probability that each potable water facility is in the "Extensive" damage state (values range from 0.0 to 1.0)
 - e. *dbo.eqPotableWaterFlty.PDsComplete* the probability that each potable water facility is in the "Complete" damage state (values range from 0.0 to 1.0)
 - f. *dbo.eqPotableWaterFlty.PDsExceedSlight* the probability that each potable water facility has experienced "Slight" or greater damage (values range from 0.0 to 1.0)
 - g. *dbo.eqPotableWaterFlty.PDsExceedModerate* the probability that each potable water facility has experienced "Moderate" or greater damage (values range from 0.0 to 1.0)
 - h. *dbo.eqPotableWaterFlty.PDsExceedExtensive* the probability that each potable water facility has experienced "Extensive" or greater damage (values range from 0.0 to 1.0)
 - i. *dbo.eqPotableWaterFlty.FunctDay1* potable water facility functionality on Day 1 (values range from 0 100%)
 - j. *dbo.eqPotableWaterFlty.FunctDay3* potable water facility functionality on Day 3 (values range from 0 100%)
 - k. *dbo.eqPotableWaterFlty.FunctDay7* potable water facility functionality on Day 7 (values range from 0 – 100%)
 - I. *dbo.eqPotableWaterFlty.FunctDay14* potable water facility functionality on Day 14 (values range from 0 100%)
 - m. *dbo.eqPotableWaterFlty.FunctDay30* potable water facility functionality on Day 30 (values range from 0 – 100%)
 - n. *dbo.eqPotableWaterFlty.FunctDay90* potable water facility functionality on Day 90 (values range from 0 100%)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

 To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated Colors". In the Fields Value dropdown menu, select


dbo.eqPotableWaterFlty.PDsExceedModerate. Under "Classification" on the righthand side, click "Classify..." to bring up the Classification window (**Figure 5.27**). From the "Classification – Classes" pulldown menu, pick 3 classes, then from the "Classification - Method:" pulldown menu, select "Manual". Edit the Break Values on the right to: 0.25, 0.75, and 1.0. Click "OK" to return to the Layer Properties window (**Figure 5.28**). Double-click on the "Symbol" to the right of each value range to access the Symbol Selector; symbolize 0 - 0.25 using a green Water Facilities symbol (e.g., use the ERS Homeland Security symbol named "L4 Water Supply Infrastructure" which can be found by typing "ERS Water" into the search box at the top of the Symbol Selector window as shown in **Figure 5.29**). Symbolize 0 - 0.25 using a green symbol, 0.25 - 0.75 using yellow symbols and 0.75 - 1.0 using red symbols. Click "OK" to accept your settings and draw the map.

- 3. It may also be helpful to include an estimate of the number of households without potable water at Day 1, their daily water needs (gallons per day) and the equivalent number of water trucks required to supply this need. The *Hazus Global Summary* Report tabulates the total number of households without water in Table 9 (page 13 of 22), while the *Potable Water System Performance Report* includes the household estimates by County. To estimate the daily water needs per person, the following calculations are required
 - a. Convert households without water to the number of people without water by multiplying by a typical number of people per households (3.0 on average, or a more precise number can be computed for each county from Hazus' demographic data on households and populations).
 - b. Assume the average person requires 1 gallon (~3.79 liters) of water per day, based on U.S. Army Corps of Engineers planning guidance.
 - c. Assume one water truck can carry 4,755 gallons (~18,000 liters) of water (per U.S. Army Corps of Engineers planning guidance) to derive the total number of truckloads required each day.

An example, by County, for the Wasatch Fault Scenario is provided in Table 5.5.

County	# Households without Potable Water (at Day 1)	Daily Potable Water Needs Per Person (Gallons/day)	Number of Truckloads needed Daily
Davis	22,017	66,051	14
Salt Lake	284,640	853,920	180
Utah	55	165	1

Table 5.5 Estimated Water Impacts and Resource Needs, by County for the Wasatch Fault Scenario Example

Figure 5.27: Classification Window for the Potable_Water_Facilities Feature Class

Figure 5.28: Layer Properties Window for the Potable_Water_Facilities Feature Class

yer Properties	
General Source Selection	Display Symbology Fields Definition Query Labels Joins & Relates Time HTML Popup
how:	Draw quantities using color to show values.
Features Categories	Fields
Quantities Graduated colors	Value: dbo.eqPotableWaterFlty.PDs Manual
Graduated symbols Proportional symbols	Normalization: none Classes: 3 Classify
Charts Multiple Attributes	Color Ramp:
	Sym Range Label
	0.000400 - 0.250000 0.000400 - 0.250000
	0.250001 - 0.750000 0.250001 - 0.750000
	0.750001 - 1.000000 0.750001 - 1.000000
	Show class ranges using feature values Advanced •
	OK Cancel Apply

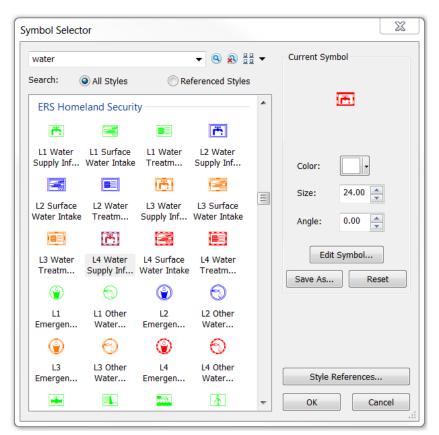


Figure 5.29: Symbol Selector Window for the Potable_Water_Facilities Feature Class

5.2.13 Strong Ground Shaking - PGA (Peak Ground Acceleration)

* This layer will be created using the file geodatabase feature class named "Census_Tract_Shelter_Needs_and_Debris" which is part of the "General_Building_Stock" file geodatabase feature dataset created by the *Hazus Export Tool*, and the USGS' PGA layer thematic settings, available in the pga.lyr file associated with each ShakeMap.

- 1. Add the "General_Building_Stock" feature dataset to your ArcGIS workspace (if it is not already loaded) to access the "*Census_Tract_Shelter_Needs_and_Debris*" feature class. As noted in Section 5.2.4, this census tract layer includes various ground shaking and ground failure hazards data by census tract, as well as debris and shelter estimates resulting from damage to buildings. Hazard data includes:
 - a. *dbo.eqTract.PGA* peak ground acceleration in each census tract (in units of g)
 - b. *dbo.eqTract.PGV* peak ground velocity in each census tract (in units of in/sec)
 - c. *dbo.eqTract.Sa03* spectral acceleration at 0.3 second period in each census tract (in units of g)
 - d. *dbo.eqTract.Sa10* spectral acceleration at 1.0 second period in each census tract, (in units of g)

Review the attribute data by opening the layer's attribute table; right-click on the layer name in the table of contents and select "Open Attribute Table".

2. To set the layer's thematic settings, right-click on the layer name and select "Properties...". In the Layer Properties window, select the "Symbology" tab. In the table of contents on the left-hand side, select "Quantities" and "Graduated colors". In the Field Selection pick list, select the field *dbo.eqTract.PGA* (Figure 5.30). Click "Import..." to access the "Import Symbology" window (Figure 5.31). Click on the folder symbol to navigate to the storage location of the USGS ShakeMap "pga.lyr" file, downloaded as part of the SHAPE.ZIP (Figure 5.32). Select the "pga.lyr" file and click "Add" to return to the "Import Symbology" window. Select "Complete symbology definition" and click "OK" to continue. This brings up the "Import Symbology Matching Dialog" (Figure 5.33); select *dbo.eqTractPGA* from the pick list and click "OK" to continue. This should result in assignment of USGS standard PGA ranges and colors as shown in Figure 5.34.

Figure 5.30: Layer Properties Window for the Census_Tract_Shelter_Needs_and_Debris Feature Class

ow:	_					_	
eatures	Draw quantiti	es using color to show	values.			Import	
ategories	Fields			Classification			
luantities	Value:	dbo.eqTract.PGA	•	Natura	l Breaks	(Jenks)	
Graduated colors Graduated symbols Proportional symbols	Normalization:	none	•	Classes: 5	•	Classify	
Dot density	Color Ramp:		•				
ultiple Attributes	Sym Range		La	bel			
	0.03612	8 - 0.156808	0.0	36128 - 0.156808			
	0.15680	9 - 0.280130	0.1	56809 - 0.280130			
		1 - 0.449854	0.2	80131 - 0.449854			
		5 - 0.592662		49855 - 0.592662			
		3 - 0.731900	0.5	92663 - 0.731900			
KIK CAL	r Show class ra	inges using feature values				Advance <u>d</u> •	

Import Symbology	X
Import symbology definition from another	layer in the map or from a layer file:
Import symbology definition from an ArcVi	ew 3 legend file (*.avl):
Layer: pga	•
What do you want to import?	
Complete symbology definition	
─ Just the symbols	
O Just the classification	OK Cancel

Figure 5.31: Import Symbology Window for the PGA layer

Figure 5.32: Import Symbology from Layer Window for the PGA layer

Import Symbo	logy from Layer				X
Look in:	Shape	- €	🏠 🗟 🏢 🕇	🖴 🖆	i \$
◆pga.lyr					
Name:	pga.lyr				Add
Show of type:	Layer files (*.lyr)			•	Cancel

Figure 5.33: Import Symbology Matching Dialog Window for the PGA layer

X
used in the
•
¥
Cancel

General Source Selection	on Display Sym	bology Fields Definition	Query La	bels Joins & Relates Time	HTML Popup
how: Features	Draw quantiti	es using color to show	values.		mport
Categories	Fields			Classification	
Quantities Graduated colors	Value:	dbo.eqTract.PGA	▼	Manual	
Graduated symbols Proportional symbols	Normalization:	none	•	Classes: 9 🔻 Cla	ssify
Dot density Charts	Color Ramp:		•		
Multiple Attributes	Sym Range		La	bel	A
		0 - 0.001600	No	t Felt (<.17%g)	
		0 - 0.013900		eak (.17 - 1.4 %g)	
		0 - 0.038900		ht (1.4 - 3.9 %g)	
		0 - 0.091900		derate (3.9 - 9.2 %g)	=
11 C & Y977		0 - 0.179900		ong (9.2 - 18 %g)	
	-7	0 - 0.339900		ry Strong (18 - 34 %g)	
A		0 - 0.649900		vere (34 - 65 %g)	
		0 - 1.239900		lent (65 - 124 %g)	-
Same /					
Martin Carton	. Snow class ra	anges using feature values		Adv	ance <u>d</u> •

Figure 5.34: Layer Properties Window for the PGA layer

5.2.14 Search and Rescue Needs

FEMA has developed a methodology that estimates potential urban search and rescue (USAR) team requirements for earthquakes using Hazus building damage estimates; the required number of USAR teams and personnel is proportional to the estimated number of collapsed buildings.

As an example, the number of red-tagged and collapsed buildings resulting from a Magnitude 7.0 scenario earthquake on the Wasatch fault underlying Salt Lake City are given in **Table 5.6**. The number of red tagged buildings is equal to the number of buildings in the Complete damage state, and can be determined as described in Section 5.2.1. Collapse rates for buildings in the Complete data State as given in the table are mathematical average values (rounded up) taken from the more detailed collapse rate table in the Hazus Technical Manual, reproduced here as **Table 5.7**.

Table 5.6 Red-Tagged and Collapsed Buildings by Structure Type for a M7.0 Wasatch Fault Scenario Earthquake

Structure Type	Red (Complete)	Collapse Rates for Complete Damage	Total Collapse	USAR Building Types
Wood	1,663	3%	50	Type IV
Steel	870	6%	52	Type I
Concrete	797	10%	80	Type I
Precast Concrete	198	13%	26	Type II
Reinforced Masonry	7,515	10%	752	Type II
Unreinforced Masonry	52,250	15%	7,838	Type III
Manufactured Housing	259	3%	8	Type IV
Total	63,552		8,806	

Table 5.7 Hazus Collapse Rates by Model Building Type for Complete Structural Damage

Model Building	Probability of Collapse Given		
Туре	a Complete Damage State		
W1	3%		
W2	3%		
S1L	8%		
S1M	5%		
S1H	3%		
S2L	8%		
S2M	5%		
S2H	3%		
S3	3%		
S4L	8%		
S4M	5%		
S4H	3%		
S5L	8%		
S5M	5%		
S5H	3%		
C1L	13%		
C1M	10%		
C1H	5%		
C2L	13%		
C2M	10%		
C2H	5%		
C3L	15%		
C3M	13%		
C3H	10%		
PC1	15%		
PC2L	15%		
PC2M	13%		
PC2H	10%		
RM1L	13%		
RM1M	10%		
RM2L	13%		

Model Building	Probability of Collapse Given	
Туре	a Complete Damage State	
RM2M	10%	
RM2H	5%	
URML	15%	
URMM	15%	
MH	3%	

The number of collapsed buildings, by USAR building type, can be combined with the USAR resource assumptions given in **Table 5.8** to estimate the number of each type of USAR team needed. The assumptions provided in **Table 5.8** were developed by FEMA, with expert assistance, for application to significant earthquake events. Nevertheless, all assumptions should be reviewed for relevance to the user's specific scenario.

	Type I	Type II	Type III	Type IV
Personnel per Team	70	32	22	6
Hours Allowed for Mission Accomplishment	72	72	72	72
Hours Deployment Time	24	24	6	6
Hours Available for Mission Accomplishment	48	48	66	66
Days Available for Mission Accomplishment	2	2	2.75	2.75
Structures per Team per Operational Period	4	8	16	30
Hours Per Day	12	12	12	12
Structures per Team per Day	4	8	16	30
Structures per Team per Mission	8	16	44	83

Table 5.8 Urban Search and Rescue Resource Assumptions

To estimate the number of USAR teams required, the number of collapsed buildings of each USAR building type is divided by the number of *Structures per Team per Mission* from **Table 5.8**. Similarly, the number of trained personnel is estimated as the number of required Teams multiplied by *Personnel per Team*.

The results for the Wasatch Fault scenario are given in **Table 5.9**. As shown in the table, this event produces significant numbers of collapsed unreinforced masonry (URM) buildings, which require a substantial number of USAR Type III teams for response.

Table 5.9 Urban Search & Rescue Team Needs Estimated for a M7.0 Wasatch Fault ScenarioEarthquake

URBAN SEARCH & RESCUE GAP ANALYSIS-Mw 7.0 WASATCH FAULT, SALT LAKE SEGMENT				
Resource	Metric	Required		
Total number of US&R Type I Task Forces required?	# Buildings	132		
(Approximately 70 members, trained & equipped for light frame, heavy wall, heavy floor and concrete-steel construction (heavy reinforced concrete)) .	Task Forces	17		
	Trained Personnel	1,190		
Total number of US&R Type II Task Forces required?	# Buildings	778		
(Approximately 32 members, trained & equipped for light frame, heavy wall, heavy floor and concrete-steel construction.)	Task Forces	49		
	Trained Personnel	1,568		
Total number of <u>Collapse S&R Type III Teams</u> required?	# Buildings	7,838		
(Approximately 22 members, trained & equipped for light frame construction.)	Teams	179		
	Trained Personnel	3,938		
Total number of Collapse S&R Type IV Teams required?	# Buildings	58		
(Approximately 6 members, trained & equipped for light frame construction.)	Teams	1		
	Trained Personnel	6		

6. References

FEMA, 2019, Hazus Earthquake Model User Guidance; Hazus Version 4.2.2.

FEMA, 2012, *Multi-Hazard Loss Estimation Methodology Earthquake Model: Hazus-MH* 2.1Technical Manual, Federal Emergency Management Agency, Washington, D.C., <u>https://www.fema.gov/media-library-data/20130726-1820-25045-6286/hzmh2_1_eq_tm.pdf</u>

FEMA, 2009, ShakeMap-Based HAZUS-MH Loss Estimation Maps: Intermountain Seismic Belt, Utah: <u>http://www.fema.gov/library/viewRecord.do?id=3660</u>

Kircher, C.A., Whitman, R.V., and Holmes, W.T., 2006, HAZUS Earthquake Loss Estimation Methods: *Natural Hazards Rev.*, Volume 7, Issue 2, pp. 45-59, Issue Date: May 2006

NEHRP, 2009, NEHRP's ShakeMap-HAZUS Demonstration Projects: SeismicWaves, How the National Earthquake Hazards Reduction Program Is Advancing Earthquake Safety, September 2009, http://www.nehrp.gov/pdf/SeismicWavesSep09.pdf

Seligson, Hope A., Anne M. Wein and Jamie L. Jones, 2018, "HayWired Scenario – Hazus Analyses of the Mainshock and Aftershocks", Chapter J in Detweiler, S.T., and Wein, A.M., eds., **The HayWired earthquake scenario—Engineering implications**: U.S. Geological Survey Scientific Investigations Report 2017–5013–I–Q, 429 p., https://doi.org/10.3133/sir20175013v2.

Wald, D. J.; Petersen, M. D.; Wald, L. A.; Frankel, A. D.; Quitoriano, V. R.; Lin, K.; Luco, N.; Mathias, S.; Bausch, D., 2009, The USGS Earthquake Scenario Project: American Geophysical Union, Fall Meeting 2009, abstract #NH51C-1066.

Wald, D.J., Lin, K.W., Porter, K., Turner, L., 2008, ShakeCast: Automating and Improving the Use of ShakeMap for Post-Earthquake Decision-Making and Response, *Earthquake Spectra* Volume 24, Issue 2, pp. 533-553 (May 2008)